1604 lines
59 KiB
C++
1604 lines
59 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testSmartProjectionRigFactor.cpp
|
|
* @brief Unit tests for SmartProjectionRigFactor Class
|
|
* @author Chris Beall
|
|
* @author Luca Carlone
|
|
* @author Zsolt Kira
|
|
* @author Frank Dellaert
|
|
* @date August 2021
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
#include <gtsam/base/serializationTestHelpers.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/slam/PoseTranslationPrior.h>
|
|
|
|
#include <boost/assign/std/map.hpp>
|
|
#include <iostream>
|
|
|
|
#include "smartFactorScenarios.h"
|
|
#define DISABLE_TIMING
|
|
|
|
using namespace boost::assign;
|
|
using namespace std::placeholders;
|
|
|
|
static const double rankTol = 1.0;
|
|
// Create a noise model for the pixel error
|
|
static const double sigma = 0.1;
|
|
static SharedIsotropic model(noiseModel::Isotropic::Sigma(2, sigma));
|
|
|
|
// Convenience for named keys
|
|
using symbol_shorthand::L;
|
|
using symbol_shorthand::X;
|
|
|
|
// tests data
|
|
static Symbol x1('X', 1);
|
|
static Symbol x2('X', 2);
|
|
static Symbol x3('X', 3);
|
|
|
|
Key cameraId1 = 0; // first camera
|
|
Key cameraId2 = 1;
|
|
Key cameraId3 = 2;
|
|
|
|
static Point2 measurement1(323.0, 240.0);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
|
|
/* ************************************************************************* */
|
|
// default Cal3_S2 poses with rolling shutter effect
|
|
namespace vanillaRig {
|
|
using namespace vanillaPose;
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
} // namespace vanillaRig
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SmartProjectionRigFactor, Constructor) {
|
|
using namespace vanillaRig;
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras());
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
SmartRigFactor::shared_ptr factor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SmartProjectionRigFactor, Constructor2) {
|
|
using namespace vanillaRig;
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras());
|
|
SmartProjectionParams params2(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
params2.setRankTolerance(rankTol);
|
|
SmartRigFactor factor1(model, cameraRig, params2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SmartProjectionRigFactor, Constructor3) {
|
|
using namespace vanillaRig;
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras());
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
SmartRigFactor::shared_ptr factor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
factor1->add(measurement1, x1, cameraId1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SmartProjectionRigFactor, Constructor4) {
|
|
using namespace vanillaRig;
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras());
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
SmartProjectionParams params2(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
params2.setRankTolerance(rankTol);
|
|
SmartRigFactor factor1(model, cameraRig, params2);
|
|
factor1.add(measurement1, x1, cameraId1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SmartProjectionRigFactor, Equals) {
|
|
using namespace vanillaRig;
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
|
|
SmartRigFactor::shared_ptr factor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
factor1->add(measurement1, x1, cameraId1);
|
|
|
|
SmartRigFactor::shared_ptr factor2(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
factor2->add(measurement1, x1, cameraId1);
|
|
|
|
CHECK(assert_equal(*factor1, *factor2));
|
|
|
|
SmartRigFactor::shared_ptr factor3(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
factor3->add(measurement1, x1); // now use default camera ID
|
|
|
|
CHECK(assert_equal(*factor1, *factor3));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, noiseless) {
|
|
using namespace vanillaRig;
|
|
|
|
// Project two landmarks into two cameras
|
|
Point2 level_uv = level_camera.project(landmark1);
|
|
Point2 level_uv_right = level_camera_right.project(landmark1);
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
|
|
SmartRigFactor factor(model, cameraRig, params);
|
|
factor.add(level_uv, x1); // both taken from the same camera
|
|
factor.add(level_uv_right, x2);
|
|
|
|
Values values; // it's a pose factor, hence these are poses
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
|
|
double actualError = factor.error(values);
|
|
double expectedError = 0.0;
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
|
|
|
SmartRigFactor::Cameras cameras = factor.cameras(values);
|
|
double actualError2 = factor.totalReprojectionError(cameras);
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
|
|
|
|
// Calculate expected derivative for point (easiest to check)
|
|
std::function<Vector(Point3)> f = //
|
|
std::bind(&SmartRigFactor::whitenedError<Point3>, factor, cameras,
|
|
std::placeholders::_1);
|
|
|
|
// Calculate using computeEP
|
|
Matrix actualE;
|
|
factor.triangulateAndComputeE(actualE, values);
|
|
|
|
// get point
|
|
boost::optional<Point3> point = factor.point();
|
|
CHECK(point);
|
|
|
|
// calculate numerical derivative with triangulated point
|
|
Matrix expectedE = sigma * numericalDerivative11<Vector, Point3>(f, *point);
|
|
EXPECT(assert_equal(expectedE, actualE, 1e-7));
|
|
|
|
// Calculate using reprojectionError
|
|
SmartRigFactor::Cameras::FBlocks F;
|
|
Matrix E;
|
|
Vector actualErrors = factor.unwhitenedError(cameras, *point, F, E);
|
|
EXPECT(assert_equal(expectedE, E, 1e-7));
|
|
|
|
EXPECT(assert_equal(Z_4x1, actualErrors, 1e-7));
|
|
|
|
// Calculate using computeJacobians
|
|
Vector b;
|
|
SmartRigFactor::FBlocks Fs;
|
|
factor.computeJacobians(Fs, E, b, cameras, *point);
|
|
double actualError3 = b.squaredNorm();
|
|
EXPECT(assert_equal(expectedE, E, 1e-7));
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError3, 1e-6);
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, noisy) {
|
|
using namespace vanillaRig;
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
|
|
// Project two landmarks into two cameras
|
|
Point2 pixelError(0.2, 0.2);
|
|
Point2 level_uv = level_camera.project(landmark1) + pixelError;
|
|
Point2 level_uv_right = level_camera_right.project(landmark1);
|
|
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
Pose3 noise_pose =
|
|
Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10), Point3(0.5, 0.1, 0.3));
|
|
values.insert(x2, pose_right.compose(noise_pose));
|
|
|
|
SmartRigFactor::shared_ptr factor(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
factor->add(level_uv, x1, cameraId1);
|
|
factor->add(level_uv_right, x2, cameraId1);
|
|
|
|
double actualError1 = factor->error(values);
|
|
|
|
// create other factor by passing multiple measurements
|
|
SmartRigFactor::shared_ptr factor2(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
|
|
Point2Vector measurements;
|
|
measurements.push_back(level_uv);
|
|
measurements.push_back(level_uv_right);
|
|
|
|
KeyVector views{x1, x2};
|
|
FastVector<size_t> cameraIds{0, 0};
|
|
|
|
factor2->add(measurements, views, cameraIds);
|
|
double actualError2 = factor2->error(values);
|
|
DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, smartFactorWithSensorBodyTransform) {
|
|
using namespace vanillaRig;
|
|
|
|
// create arbitrary body_T_sensor (transforms from sensor to body)
|
|
Pose3 body_T_sensor =
|
|
Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(body_T_sensor, sharedK));
|
|
|
|
// These are the poses we want to estimate, from camera measurements
|
|
const Pose3 sensor_T_body = body_T_sensor.inverse();
|
|
Pose3 wTb1 = cam1.pose() * sensor_T_body;
|
|
Pose3 wTb2 = cam2.pose() * sensor_T_body;
|
|
Pose3 wTb3 = cam3.pose() * sensor_T_body;
|
|
|
|
// three landmarks ~5 meters infront of camera
|
|
Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
// Create smart factors
|
|
KeyVector views{x1, x2, x3};
|
|
FastVector<size_t> cameraIds{0, 0, 0};
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(1.0);
|
|
params.setDegeneracyMode(ZERO_ON_DEGENERACY);
|
|
params.setEnableEPI(false);
|
|
|
|
SmartRigFactor smartFactor1(model, cameraRig, params);
|
|
smartFactor1.add(
|
|
measurements_cam1,
|
|
views); // use default CameraIds since we have a single camera
|
|
|
|
SmartRigFactor smartFactor2(model, cameraRig, params);
|
|
smartFactor2.add(measurements_cam2, views);
|
|
|
|
SmartRigFactor smartFactor3(model, cameraRig, params);
|
|
smartFactor3.add(measurements_cam3, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
// Put all factors in factor graph, adding priors
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, wTb1, noisePrior);
|
|
graph.addPrior(x2, wTb2, noisePrior);
|
|
|
|
// Check errors at ground truth poses
|
|
Values gtValues;
|
|
gtValues.insert(x1, wTb1);
|
|
gtValues.insert(x2, wTb2);
|
|
gtValues.insert(x3, wTb3);
|
|
double actualError = graph.error(gtValues);
|
|
double expectedError = 0.0;
|
|
DOUBLES_EQUAL(expectedError, actualError, 1e-7)
|
|
|
|
Pose3 noise_pose =
|
|
Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.1, 0.1, 0.1));
|
|
Values values;
|
|
values.insert(x1, wTb1);
|
|
values.insert(x2, wTb2);
|
|
// initialize third pose with some noise, we expect it to move back to
|
|
// original pose3
|
|
values.insert(x3, wTb3 * noise_pose);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, smartFactorWithMultipleCameras) {
|
|
using namespace vanillaRig;
|
|
|
|
// create arbitrary body_T_sensor (transforms from sensor to body)
|
|
Pose3 body_T_sensor1 =
|
|
Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
|
|
Pose3 body_T_sensor2 =
|
|
Pose3(Rot3::Ypr(-M_PI / 5, 0., -M_PI / 2), Point3(0, 0, 1));
|
|
Pose3 body_T_sensor3 = Pose3();
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(body_T_sensor1, sharedK));
|
|
cameraRig->push_back(Camera(body_T_sensor2, sharedK));
|
|
cameraRig->push_back(Camera(body_T_sensor3, sharedK));
|
|
|
|
// These are the poses we want to estimate, from camera measurements
|
|
const Pose3 sensor_T_body1 = body_T_sensor1.inverse();
|
|
const Pose3 sensor_T_body2 = body_T_sensor2.inverse();
|
|
const Pose3 sensor_T_body3 = body_T_sensor3.inverse();
|
|
Pose3 wTb1 = cam1.pose() * sensor_T_body1;
|
|
Pose3 wTb2 = cam2.pose() * sensor_T_body2;
|
|
Pose3 wTb3 = cam3.pose() * sensor_T_body3;
|
|
|
|
// three landmarks ~5 meters infront of camera
|
|
Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
// Create smart factors
|
|
KeyVector views{x1, x2, x3};
|
|
FastVector<size_t> cameraIds{0, 1, 2};
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(1.0);
|
|
params.setDegeneracyMode(ZERO_ON_DEGENERACY);
|
|
params.setEnableEPI(false);
|
|
|
|
SmartRigFactor smartFactor1(model, cameraRig, params);
|
|
smartFactor1.add(measurements_cam1, views, cameraIds);
|
|
|
|
SmartRigFactor smartFactor2(model, cameraRig, params);
|
|
smartFactor2.add(measurements_cam2, views, cameraIds);
|
|
|
|
SmartRigFactor smartFactor3(model, cameraRig, params);
|
|
smartFactor3.add(measurements_cam3, views, cameraIds);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
// Put all factors in factor graph, adding priors
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, wTb1, noisePrior);
|
|
graph.addPrior(x2, wTb2, noisePrior);
|
|
|
|
// Check errors at ground truth poses
|
|
Values gtValues;
|
|
gtValues.insert(x1, wTb1);
|
|
gtValues.insert(x2, wTb2);
|
|
gtValues.insert(x3, wTb3);
|
|
double actualError = graph.error(gtValues);
|
|
double expectedError = 0.0;
|
|
DOUBLES_EQUAL(expectedError, actualError, 1e-7)
|
|
|
|
Pose3 noise_pose =
|
|
Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.1, 0.1, 0.1));
|
|
Values values;
|
|
values.insert(x1, wTb1);
|
|
values.insert(x2, wTb2);
|
|
// initialize third pose with some noise, we expect it to move back to
|
|
// original pose3
|
|
values.insert(x3, wTb3 * noise_pose);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, 3poses_smart_projection_factor) {
|
|
using namespace vanillaPose2;
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK2));
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
KeyVector views{x1, x2, x3};
|
|
FastVector<size_t> cameraIds{
|
|
0, 0, 0}; // 3 measurements from the same camera in the rig
|
|
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(measurements_cam1, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor2(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor2->add(measurements_cam2, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor3(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor3->add(measurements_cam3, views, cameraIds);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
Values groundTruth;
|
|
groundTruth.insert(x1, cam1.pose());
|
|
groundTruth.insert(x2, cam2.pose());
|
|
groundTruth.insert(x3, cam3.pose());
|
|
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
|
|
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
// initialize third pose with some noise, we expect it to move back to
|
|
// original pose_above
|
|
values.insert(x3, pose_above * noise_pose);
|
|
EXPECT(assert_equal(
|
|
Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
|
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
|
Point3(0.1, -0.1, 1.9)),
|
|
values.at<Pose3>(x3)));
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, Factors) {
|
|
using namespace vanillaRig;
|
|
|
|
// Default cameras for simple derivatives
|
|
Rot3 R;
|
|
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(100, 100, 0, 0, 0));
|
|
Camera cam1(Pose3(R, Point3(0, 0, 0)), sharedK),
|
|
cam2(Pose3(R, Point3(1, 0, 0)), sharedK);
|
|
|
|
// one landmarks 1m in front of camera
|
|
Point3 landmark1(0, 0, 10);
|
|
|
|
Point2Vector measurements_cam1;
|
|
|
|
// Project 2 landmarks into 2 cameras
|
|
measurements_cam1.push_back(cam1.project(landmark1));
|
|
measurements_cam1.push_back(cam2.project(landmark1));
|
|
|
|
// Create smart factors
|
|
KeyVector views{x1, x2};
|
|
FastVector<size_t> cameraIds{0, 0};
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1 = boost::make_shared<SmartRigFactor>(
|
|
model, cameraRig, params);
|
|
smartFactor1->add(measurements_cam1,
|
|
views); // we have a single camera so use default cameraIds
|
|
|
|
SmartRigFactor::Cameras cameras;
|
|
cameras.push_back(cam1);
|
|
cameras.push_back(cam2);
|
|
|
|
// Make sure triangulation works
|
|
CHECK(smartFactor1->triangulateSafe(cameras));
|
|
CHECK(!smartFactor1->isDegenerate());
|
|
CHECK(!smartFactor1->isPointBehindCamera());
|
|
boost::optional<Point3> p = smartFactor1->point();
|
|
CHECK(p);
|
|
EXPECT(assert_equal(landmark1, *p));
|
|
|
|
VectorValues zeroDelta;
|
|
Vector6 delta;
|
|
delta.setZero();
|
|
zeroDelta.insert(x1, delta);
|
|
zeroDelta.insert(x2, delta);
|
|
|
|
VectorValues perturbedDelta;
|
|
delta.setOnes();
|
|
perturbedDelta.insert(x1, delta);
|
|
perturbedDelta.insert(x2, delta);
|
|
double expectedError = 2500;
|
|
|
|
// After eliminating the point, A1 and A2 contain 2-rank information on
|
|
// cameras:
|
|
Matrix16 A1, A2;
|
|
A1 << -10, 0, 0, 0, 1, 0;
|
|
A2 << 10, 0, 1, 0, -1, 0;
|
|
A1 *= 10. / sigma;
|
|
A2 *= 10. / sigma;
|
|
Matrix expectedInformation; // filled below
|
|
{
|
|
// createHessianFactor
|
|
Matrix66 G11 = 0.5 * A1.transpose() * A1;
|
|
Matrix66 G12 = 0.5 * A1.transpose() * A2;
|
|
Matrix66 G22 = 0.5 * A2.transpose() * A2;
|
|
|
|
Vector6 g1;
|
|
g1.setZero();
|
|
Vector6 g2;
|
|
g2.setZero();
|
|
|
|
double f = 0;
|
|
|
|
RegularHessianFactor<6> expected(x1, x2, G11, G12, g1, G22, g2, f);
|
|
expectedInformation = expected.information();
|
|
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
|
|
boost::shared_ptr<RegularHessianFactor<6>> actual =
|
|
smartFactor1->createHessianFactor(values, 0.0);
|
|
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-6));
|
|
EXPECT(assert_equal(expected, *actual, 1e-6));
|
|
EXPECT_DOUBLES_EQUAL(0, actual->error(zeroDelta), 1e-6);
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actual->error(perturbedDelta), 1e-6);
|
|
}
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, 3poses_iterative_smart_projection_factor) {
|
|
using namespace vanillaRig;
|
|
|
|
KeyVector views{x1, x2, x3};
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
// create smart factor
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
FastVector<size_t> cameraIds{0, 0, 0};
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(measurements_cam1, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor2(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor2->add(measurements_cam2, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor3(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor3->add(measurements_cam3, views, cameraIds);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
|
|
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
// initialize third pose with some noise, we expect it to move back to
|
|
// original pose_above
|
|
values.insert(x3, pose_above * noise_pose);
|
|
EXPECT(assert_equal(Pose3(Rot3(1.11022302e-16, -0.0314107591, 0.99950656,
|
|
-0.99950656, -0.0313952598, -0.000986635786,
|
|
0.0314107591, -0.999013364, -0.0313952598),
|
|
Point3(0.1, -0.1, 1.9)),
|
|
values.at<Pose3>(x3)));
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-7));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, landmarkDistance) {
|
|
using namespace vanillaRig;
|
|
|
|
double excludeLandmarksFutherThanDist = 2;
|
|
|
|
KeyVector views{x1, x2, x3};
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(1.0);
|
|
params.setLinearizationMode(gtsam::HESSIAN);
|
|
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
|
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
|
|
params.setEnableEPI(false);
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
FastVector<size_t> cameraIds{0, 0, 0};
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(measurements_cam1, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor2(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor2->add(measurements_cam2, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor3(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor3->add(measurements_cam3, views, cameraIds);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
|
|
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
values.insert(x3, pose_above * noise_pose);
|
|
|
|
// All factors are disabled and pose should remain where it is
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(values.at<Pose3>(x3), result.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, dynamicOutlierRejection) {
|
|
using namespace vanillaRig;
|
|
|
|
double excludeLandmarksFutherThanDist = 1e10;
|
|
double dynamicOutlierRejectionThreshold =
|
|
1; // max 1 pixel of average reprojection error
|
|
|
|
KeyVector views{x1, x2, x3};
|
|
|
|
// add fourth landmark
|
|
Point3 landmark4(5, -0.5, 1);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3,
|
|
measurements_cam4;
|
|
|
|
// Project 4 landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_cam4);
|
|
measurements_cam4.at(0) =
|
|
measurements_cam4.at(0) + Point2(10, 10); // add outlier
|
|
|
|
SmartProjectionParams params;
|
|
params.setLinearizationMode(gtsam::HESSIAN);
|
|
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
|
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
|
|
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
FastVector<size_t> cameraIds{0, 0, 0};
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(measurements_cam1, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor2(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor2->add(measurements_cam2, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor3(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor3->add(measurements_cam3, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor4(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor4->add(measurements_cam4, views, cameraIds);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.push_back(smartFactor4);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
values.insert(x3, cam3.pose());
|
|
|
|
// All factors are disabled and pose should remain where it is
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(cam3.pose(), result.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, CheckHessian) {
|
|
KeyVector views{x1, x2, x3};
|
|
|
|
using namespace vanillaRig;
|
|
|
|
// Two slightly different cameras
|
|
Pose3 pose2 =
|
|
level_pose * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
|
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
|
Camera cam2(pose2, sharedK);
|
|
Camera cam3(pose3, sharedK);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(10);
|
|
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
FastVector<size_t> cameraIds{0, 0, 0};
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params)); // HESSIAN, by default
|
|
smartFactor1->add(measurements_cam1, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor2(
|
|
new SmartRigFactor(model, cameraRig, params)); // HESSIAN, by default
|
|
smartFactor2->add(measurements_cam2, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor3(
|
|
new SmartRigFactor(model, cameraRig, params)); // HESSIAN, by default
|
|
smartFactor3->add(measurements_cam3, views, cameraIds);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
|
|
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
// initialize third pose with some noise, we expect it to move back to
|
|
// original pose_above
|
|
values.insert(x3, pose3 * noise_pose);
|
|
EXPECT(assert_equal(Pose3(Rot3(0.00563056869, -0.130848107, 0.991386438,
|
|
-0.991390265, -0.130426831, -0.0115837907,
|
|
0.130819108, -0.98278564, -0.130455917),
|
|
Point3(0.0897734171, -0.110201006, 0.901022872)),
|
|
values.at<Pose3>(x3)));
|
|
|
|
boost::shared_ptr<GaussianFactor> factor1 = smartFactor1->linearize(values);
|
|
boost::shared_ptr<GaussianFactor> factor2 = smartFactor2->linearize(values);
|
|
boost::shared_ptr<GaussianFactor> factor3 = smartFactor3->linearize(values);
|
|
|
|
Matrix CumulativeInformation =
|
|
factor1->information() + factor2->information() + factor3->information();
|
|
|
|
boost::shared_ptr<GaussianFactorGraph> GaussianGraph =
|
|
graph.linearize(values);
|
|
Matrix GraphInformation = GaussianGraph->hessian().first;
|
|
|
|
// Check Hessian
|
|
EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-6));
|
|
|
|
Matrix AugInformationMatrix = factor1->augmentedInformation() +
|
|
factor2->augmentedInformation() +
|
|
factor3->augmentedInformation();
|
|
|
|
// Check Information vector
|
|
Vector InfoVector = AugInformationMatrix.block(
|
|
0, 18, 18, 1); // 18x18 Hessian + information vector
|
|
|
|
// Check Hessian
|
|
EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-6));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, Hessian) {
|
|
using namespace vanillaPose2;
|
|
|
|
KeyVector views{x1, x2};
|
|
|
|
// Project three landmarks into 2 cameras
|
|
Point2 cam1_uv1 = cam1.project(landmark1);
|
|
Point2 cam2_uv1 = cam2.project(landmark1);
|
|
Point2Vector measurements_cam1;
|
|
measurements_cam1.push_back(cam1_uv1);
|
|
measurements_cam1.push_back(cam2_uv1);
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK2));
|
|
FastVector<size_t> cameraIds{0, 0};
|
|
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(measurements_cam1, views, cameraIds);
|
|
|
|
Pose3 noise_pose =
|
|
Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10), Point3(0.5, 0.1, 0.3));
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
|
|
boost::shared_ptr<GaussianFactor> factor = smartFactor1->linearize(values);
|
|
|
|
// compute triangulation from linearization point
|
|
// compute reprojection errors (sum squared)
|
|
// compare with factor.info(): the bottom right element is the squared sum of
|
|
// the reprojection errors (normalized by the covariance) check that it is
|
|
// correctly scaled when using noiseProjection = [1/4 0; 0 1/4]
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SmartProjectionRigFactor, ConstructorWithCal3Bundler) {
|
|
using namespace bundlerPose;
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedBundlerK));
|
|
|
|
SmartProjectionParams params;
|
|
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
|
SmartRigFactor factor(model, cameraRig, params);
|
|
factor.add(measurement1, x1, cameraId1);
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, Cal3Bundler) {
|
|
using namespace bundlerPose;
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
|
|
// three landmarks ~5 meters in front of camera
|
|
Point3 landmark3(3, 0, 3.0);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
KeyVector views{x1, x2, x3};
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedBundlerK));
|
|
FastVector<size_t> cameraIds{0, 0, 0};
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(measurements_cam1, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor2(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor2->add(measurements_cam2, views, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor3(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor3->add(measurements_cam3, views, cameraIds);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
|
|
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
// initialize third pose with some noise, we expect it to move back to
|
|
// original pose_above
|
|
values.insert(x3, pose_above * noise_pose);
|
|
EXPECT(assert_equal(
|
|
Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
|
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
|
Point3(0.1, -0.1, 1.9)),
|
|
values.at<Pose3>(x3)));
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(cam3.pose(), result.at<Pose3>(x3), 1e-6));
|
|
}
|
|
|
|
#include <gtsam/slam/ProjectionFactor.h>
|
|
typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
|
|
static Symbol l0('L', 0);
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor,
|
|
hessianComparedToProjFactors_measurementsFromSamePose) {
|
|
// in this test we make sure the fact works even if we have multiple pixel
|
|
// measurements of the same landmark at a single pose, a setup that occurs in
|
|
// multi-camera systems
|
|
|
|
using namespace vanillaRig;
|
|
Point2Vector measurements_lmk1;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
|
|
|
|
// create redundant measurements:
|
|
Camera::MeasurementVector measurements_lmk1_redundant = measurements_lmk1;
|
|
measurements_lmk1_redundant.push_back(
|
|
measurements_lmk1.at(0)); // we readd the first measurement
|
|
|
|
// create inputs
|
|
KeyVector keys{x1, x2, x3, x1};
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
FastVector<size_t> cameraIds{0, 0, 0, 0};
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(measurements_lmk1_redundant, keys, cameraIds);
|
|
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, level_pose);
|
|
values.insert(x2, pose_right);
|
|
// initialize third pose with some noise to get a nontrivial linearization
|
|
// point
|
|
values.insert(x3, pose_above * noise_pose);
|
|
EXPECT( // check that the pose is actually noisy
|
|
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
|
|
-0.0313952598, -0.000986635786, 0.0314107591,
|
|
-0.999013364, -0.0313952598),
|
|
Point3(0.1, -0.1, 1.9)),
|
|
values.at<Pose3>(x3)));
|
|
|
|
// linearization point for the poses
|
|
Pose3 pose1 = level_pose;
|
|
Pose3 pose2 = pose_right;
|
|
Pose3 pose3 = pose_above * noise_pose;
|
|
|
|
// ==== check Hessian of smartFactor1 =====
|
|
// -- compute actual Hessian
|
|
boost::shared_ptr<GaussianFactor> linearfactor1 =
|
|
smartFactor1->linearize(values);
|
|
Matrix actualHessian = linearfactor1->information();
|
|
|
|
// -- compute expected Hessian from manual Schur complement from Jacobians
|
|
// linearization point for the 3D point
|
|
smartFactor1->triangulateSafe(smartFactor1->cameras(values));
|
|
TriangulationResult point = smartFactor1->point();
|
|
EXPECT(point.valid()); // check triangulated point is valid
|
|
|
|
// Use standard ProjectionFactor factor to calculate the Jacobians
|
|
Matrix F = Matrix::Zero(2 * 4, 6 * 3);
|
|
Matrix E = Matrix::Zero(2 * 4, 3);
|
|
Vector b = Vector::Zero(2 * 4);
|
|
|
|
// create projection factors rolling shutter
|
|
TestProjectionFactor factor11(measurements_lmk1_redundant[0], model, x1, l0,
|
|
sharedK);
|
|
Matrix HPoseActual, HEActual;
|
|
// note: b is minus the reprojection error, cf the smart factor jacobian
|
|
// computation
|
|
b.segment<2>(0) =
|
|
-factor11.evaluateError(pose1, *point, HPoseActual, HEActual);
|
|
F.block<2, 6>(0, 0) = HPoseActual;
|
|
E.block<2, 3>(0, 0) = HEActual;
|
|
|
|
TestProjectionFactor factor12(measurements_lmk1_redundant[1], model, x2, l0,
|
|
sharedK);
|
|
b.segment<2>(2) =
|
|
-factor12.evaluateError(pose2, *point, HPoseActual, HEActual);
|
|
F.block<2, 6>(2, 6) = HPoseActual;
|
|
E.block<2, 3>(2, 0) = HEActual;
|
|
|
|
TestProjectionFactor factor13(measurements_lmk1_redundant[2], model, x3, l0,
|
|
sharedK);
|
|
b.segment<2>(4) =
|
|
-factor13.evaluateError(pose3, *point, HPoseActual, HEActual);
|
|
F.block<2, 6>(4, 12) = HPoseActual;
|
|
E.block<2, 3>(4, 0) = HEActual;
|
|
|
|
TestProjectionFactor factor14(measurements_lmk1_redundant[3], model, x1, l0,
|
|
sharedK);
|
|
b.segment<2>(6) =
|
|
-factor11.evaluateError(pose1, *point, HPoseActual, HEActual);
|
|
F.block<2, 6>(6, 0) = HPoseActual;
|
|
E.block<2, 3>(6, 0) = HEActual;
|
|
|
|
// whiten
|
|
F = (1 / sigma) * F;
|
|
E = (1 / sigma) * E;
|
|
b = (1 / sigma) * b;
|
|
//* G = F' * F - F' * E * P * E' * F
|
|
Matrix P = (E.transpose() * E).inverse();
|
|
Matrix expectedHessian =
|
|
F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
|
|
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
|
|
|
|
// ==== check Information vector of smartFactor1 =====
|
|
GaussianFactorGraph gfg;
|
|
gfg.add(linearfactor1);
|
|
Matrix actualHessian_v2 = gfg.hessian().first;
|
|
EXPECT(assert_equal(actualHessian_v2, actualHessian,
|
|
1e-6)); // sanity check on hessian
|
|
|
|
// -- compute actual information vector
|
|
Vector actualInfoVector = gfg.hessian().second;
|
|
|
|
// -- compute expected information vector from manual Schur complement from
|
|
// Jacobians
|
|
//* g = F' * (b - E * P * E' * b)
|
|
Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
|
|
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
|
|
|
|
// ==== check error of smartFactor1 (again) =====
|
|
NonlinearFactorGraph nfg_projFactors;
|
|
nfg_projFactors.add(factor11);
|
|
nfg_projFactors.add(factor12);
|
|
nfg_projFactors.add(factor13);
|
|
nfg_projFactors.add(factor14);
|
|
values.insert(l0, *point);
|
|
|
|
double actualError = smartFactor1->error(values);
|
|
double expectedError = nfg_projFactors.error(values);
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, optimization_3poses_measurementsFromSamePose) {
|
|
using namespace vanillaRig;
|
|
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
|
|
|
|
// create inputs
|
|
KeyVector keys{x1, x2, x3};
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(Pose3(), sharedK));
|
|
FastVector<size_t> cameraIds{0, 0, 0};
|
|
FastVector<size_t> cameraIdsRedundant{0, 0, 0, 0};
|
|
|
|
// For first factor, we create redundant measurement (taken by the same keys
|
|
// as factor 1, to make sure the redundancy in the keys does not create
|
|
// problems)
|
|
Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
|
|
measurements_lmk1_redundant.push_back(
|
|
measurements_lmk1.at(0)); // we readd the first measurement
|
|
KeyVector keys_redundant = keys;
|
|
keys_redundant.push_back(keys.at(0)); // we readd the first key
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(measurements_lmk1_redundant, keys_redundant,
|
|
cameraIdsRedundant);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor2(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor2->add(measurements_lmk2, keys, cameraIds);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor3(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor3->add(measurements_lmk3, keys, cameraIds);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, level_pose, noisePrior);
|
|
graph.addPrior(x2, pose_right, noisePrior);
|
|
|
|
Values groundTruth;
|
|
groundTruth.insert(x1, level_pose);
|
|
groundTruth.insert(x2, pose_right);
|
|
groundTruth.insert(x3, pose_above);
|
|
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
|
|
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, level_pose);
|
|
values.insert(x2, pose_right);
|
|
// initialize third pose with some noise, we expect it to move back to
|
|
// original pose_above
|
|
values.insert(x3, pose_above * noise_pose);
|
|
EXPECT( // check that the pose is actually noisy
|
|
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
|
|
-0.0313952598, -0.000986635786, 0.0314107591,
|
|
-0.999013364, -0.0313952598),
|
|
Point3(0.1, -0.1, 1.9)),
|
|
values.at<Pose3>(x3)));
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
|
|
}
|
|
|
|
#ifndef DISABLE_TIMING
|
|
#include <gtsam/base/timing.h>
|
|
// this factor is slightly slower (but comparable) to original
|
|
// SmartProjectionPoseFactor
|
|
//-Total: 0 CPU (0 times, 0 wall, 0.17 children, min: 0 max: 0)
|
|
//| -SmartRigFactor LINEARIZE: 0.05 CPU (10000 times, 0.057952 wall, 0.05
|
|
// children, min: 0 max: 0) | -SmartPoseFactor LINEARIZE: 0.05 CPU (10000
|
|
// times, 0.069647 wall, 0.05 children, min: 0 max: 0)
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionRigFactor, timing) {
|
|
using namespace vanillaRig;
|
|
|
|
// Default cameras for simple derivatives
|
|
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
|
|
|
|
Rot3 R = Rot3::Identity();
|
|
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
|
|
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
|
|
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
|
|
Pose3 body_P_sensorId = Pose3();
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
|
|
cameraRig->push_back(Camera(body_P_sensorId, sharedKSimple));
|
|
|
|
// one landmarks 1m in front of camera
|
|
Point3 landmark1(0, 0, 10);
|
|
|
|
Point2Vector measurements_lmk1;
|
|
|
|
// Project 2 landmarks into 2 cameras
|
|
measurements_lmk1.push_back(cam1.project(landmark1));
|
|
measurements_lmk1.push_back(cam2.project(landmark1));
|
|
|
|
size_t nrTests = 10000;
|
|
|
|
for (size_t i = 0; i < nrTests; i++) {
|
|
SmartRigFactor::shared_ptr smartRigFactor(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartRigFactor->add(measurements_lmk1[0], x1, cameraId1);
|
|
smartRigFactor->add(measurements_lmk1[1], x1, cameraId1);
|
|
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
gttic_(SmartRigFactor_LINEARIZE);
|
|
smartRigFactor->linearize(values);
|
|
gttoc_(SmartRigFactor_LINEARIZE);
|
|
}
|
|
|
|
for (size_t i = 0; i < nrTests; i++) {
|
|
SmartFactor::shared_ptr smartFactor(
|
|
new SmartFactor(model, sharedKSimple, params));
|
|
smartFactor->add(measurements_lmk1[0], x1);
|
|
smartFactor->add(measurements_lmk1[1], x2);
|
|
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
gttic_(SmartPoseFactor_LINEARIZE);
|
|
smartFactor->linearize(values);
|
|
gttoc_(SmartPoseFactor_LINEARIZE);
|
|
}
|
|
tictoc_print_();
|
|
}
|
|
#endif
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionFactorP, optimization_3poses_sphericalCamera) {
|
|
using namespace sphericalCamera;
|
|
Camera::MeasurementVector measurements_lmk1, measurements_lmk2,
|
|
measurements_lmk3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark1,
|
|
measurements_lmk1);
|
|
projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark2,
|
|
measurements_lmk2);
|
|
projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark3,
|
|
measurements_lmk3);
|
|
|
|
// create inputs
|
|
KeyVector keys;
|
|
keys.push_back(x1);
|
|
keys.push_back(x2);
|
|
keys.push_back(x3);
|
|
|
|
boost::shared_ptr<Cameras> cameraRig(new Cameras());
|
|
cameraRig->push_back(Camera(Pose3(), emptyK));
|
|
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
params.setRankTolerance(0.1);
|
|
|
|
SmartFactorP::shared_ptr smartFactor1(
|
|
new SmartFactorP(model, cameraRig, params));
|
|
smartFactor1->add(measurements_lmk1, keys);
|
|
|
|
SmartFactorP::shared_ptr smartFactor2(
|
|
new SmartFactorP(model, cameraRig, params));
|
|
smartFactor2->add(measurements_lmk2, keys);
|
|
|
|
SmartFactorP::shared_ptr smartFactor3(
|
|
new SmartFactorP(model, cameraRig, params));
|
|
smartFactor3->add(measurements_lmk3, keys);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, level_pose, noisePrior);
|
|
graph.addPrior(x2, pose_right, noisePrior);
|
|
|
|
Values groundTruth;
|
|
groundTruth.insert(x1, level_pose);
|
|
groundTruth.insert(x2, pose_right);
|
|
groundTruth.insert(x3, pose_above);
|
|
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
|
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 100),
|
|
Point3(0.2, 0.2, 0.2)); // note: larger noise!
|
|
|
|
Values values;
|
|
values.insert(x1, level_pose);
|
|
values.insert(x2, pose_right);
|
|
// initialize third pose with some noise, we expect it to move back to
|
|
// original pose_above
|
|
values.insert(x3, pose_above * noise_pose);
|
|
|
|
DOUBLES_EQUAL(0.94148963675515274, graph.error(values), 1e-9);
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
|
|
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
|
|
}
|
|
|
|
#ifndef DISABLE_TIMING
|
|
#include <gtsam/base/timing.h>
|
|
// using spherical camera is slightly slower (but comparable) to
|
|
// PinholePose<Cal3_S2>
|
|
//| -SmartFactorP spherical LINEARIZE: 0.01 CPU (1000 times, 0.008178 wall,
|
|
// 0.01 children, min: 0 max: 0) | -SmartFactorP pinhole LINEARIZE: 0.01 CPU
|
|
//(1000 times, 0.005717 wall, 0.01 children, min: 0 max: 0)
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionFactorP, timing_sphericalCamera) {
|
|
// create common data
|
|
Rot3 R = Rot3::Identity();
|
|
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
|
|
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
|
|
Pose3 body_P_sensorId = Pose3();
|
|
Point3 landmark1(0, 0, 10);
|
|
|
|
// create spherical data
|
|
EmptyCal::shared_ptr emptyK;
|
|
SphericalCamera cam1_sphere(pose1, emptyK), cam2_sphere(pose2, emptyK);
|
|
// Project 2 landmarks into 2 cameras
|
|
std::vector<Unit3> measurements_lmk1_sphere;
|
|
measurements_lmk1_sphere.push_back(cam1_sphere.project(landmark1));
|
|
measurements_lmk1_sphere.push_back(cam2_sphere.project(landmark1));
|
|
|
|
// create Cal3_S2 data
|
|
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
|
|
PinholePose<Cal3_S2> cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
|
|
// Project 2 landmarks into 2 cameras
|
|
std::vector<Point2> measurements_lmk1;
|
|
measurements_lmk1.push_back(cam1.project(landmark1));
|
|
measurements_lmk1.push_back(cam2.project(landmark1));
|
|
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
|
|
size_t nrTests = 1000;
|
|
|
|
for (size_t i = 0; i < nrTests; i++) {
|
|
boost::shared_ptr<CameraSet<SphericalCamera>> cameraRig(
|
|
new CameraSet<SphericalCamera>()); // single camera in the rig
|
|
cameraRig->push_back(SphericalCamera(body_P_sensorId, emptyK));
|
|
|
|
SmartProjectionRigFactor<SphericalCamera>::shared_ptr smartFactorP(
|
|
new SmartProjectionRigFactor<SphericalCamera>(model, cameraRig,
|
|
params));
|
|
smartFactorP->add(measurements_lmk1_sphere[0], x1);
|
|
smartFactorP->add(measurements_lmk1_sphere[1], x1);
|
|
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
gttic_(SmartFactorP_spherical_LINEARIZE);
|
|
smartFactorP->linearize(values);
|
|
gttoc_(SmartFactorP_spherical_LINEARIZE);
|
|
}
|
|
|
|
for (size_t i = 0; i < nrTests; i++) {
|
|
boost::shared_ptr<CameraSet<PinholePose<Cal3_S2>>> cameraRig(
|
|
new CameraSet<PinholePose<Cal3_S2>>()); // single camera in the rig
|
|
cameraRig->push_back(PinholePose<Cal3_S2>(body_P_sensorId, sharedKSimple));
|
|
|
|
SmartProjectionRigFactor<PinholePose<Cal3_S2>>::shared_ptr smartFactorP2(
|
|
new SmartProjectionRigFactor<PinholePose<Cal3_S2>>(model, cameraRig,
|
|
params));
|
|
smartFactorP2->add(measurements_lmk1[0], x1);
|
|
smartFactorP2->add(measurements_lmk1[1], x1);
|
|
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
gttic_(SmartFactorP_pinhole_LINEARIZE);
|
|
smartFactorP2->linearize(values);
|
|
gttoc_(SmartFactorP_pinhole_LINEARIZE);
|
|
}
|
|
tictoc_print_();
|
|
}
|
|
#endif
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionFactorP, 2poses_rankTol) {
|
|
Pose3 poseA = Pose3(
|
|
Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
|
|
Point3(0.0, 0.0, 0.0)); // with z pointing along x axis of global frame
|
|
Pose3 poseB = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
|
|
Point3(0.0, -0.1, 0.0)); // 10cm to the right of poseA
|
|
Point3 landmarkL = Point3(5.0, 0.0, 0.0); // 5m in front of poseA
|
|
|
|
// triangulate from a stereo with 10cm baseline, assuming standard calibration
|
|
{ // default rankTol = 1 gives a valid point (compare with calibrated and
|
|
// spherical cameras below)
|
|
using namespace vanillaPose; // pinhole with Cal3_S2 calibration
|
|
|
|
Camera cam1(poseA, sharedK);
|
|
Camera cam2(poseB, sharedK);
|
|
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
params.setRankTolerance(1);
|
|
|
|
boost::shared_ptr<CameraSet<PinholePose<Cal3_S2>>> cameraRig(
|
|
new CameraSet<PinholePose<Cal3_S2>>()); // single camera in the rig
|
|
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3(), sharedK));
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(cam1.project(landmarkL), x1);
|
|
smartFactor1->add(cam2.project(landmarkL), x2);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
|
|
Values groundTruth;
|
|
groundTruth.insert(x1, poseA);
|
|
groundTruth.insert(x2, poseB);
|
|
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
|
|
|
// get point
|
|
TriangulationResult point = smartFactor1->point();
|
|
EXPECT(point.valid()); // valid triangulation
|
|
EXPECT(assert_equal(landmarkL, *point, 1e-7));
|
|
}
|
|
// triangulate from a stereo with 10cm baseline, assuming canonical
|
|
// calibration
|
|
{ // default rankTol = 1 or 0.1 gives a degenerate point, which is
|
|
// undesirable for a point 5m away and 10cm baseline
|
|
using namespace vanillaPose; // pinhole with Cal3_S2 calibration
|
|
static Cal3_S2::shared_ptr canonicalK(
|
|
new Cal3_S2(1.0, 1.0, 0.0, 0.0, 0.0)); // canonical camera
|
|
|
|
Camera cam1(poseA, canonicalK);
|
|
Camera cam2(poseB, canonicalK);
|
|
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
params.setRankTolerance(0.1);
|
|
|
|
boost::shared_ptr<CameraSet<PinholePose<Cal3_S2>>> cameraRig(
|
|
new CameraSet<PinholePose<Cal3_S2>>()); // single camera in the rig
|
|
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3(), canonicalK));
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(cam1.project(landmarkL), x1);
|
|
smartFactor1->add(cam2.project(landmarkL), x2);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
|
|
Values groundTruth;
|
|
groundTruth.insert(x1, poseA);
|
|
groundTruth.insert(x2, poseB);
|
|
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
|
|
|
// get point
|
|
TriangulationResult point = smartFactor1->point();
|
|
EXPECT(point.degenerate()); // valid triangulation
|
|
}
|
|
// triangulate from a stereo with 10cm baseline, assuming canonical
|
|
// calibration
|
|
{ // smaller rankTol = 0.01 gives a valid point (compare with calibrated and
|
|
// spherical cameras below)
|
|
using namespace vanillaPose; // pinhole with Cal3_S2 calibration
|
|
static Cal3_S2::shared_ptr canonicalK(
|
|
new Cal3_S2(1.0, 1.0, 0.0, 0.0, 0.0)); // canonical camera
|
|
|
|
Camera cam1(poseA, canonicalK);
|
|
Camera cam2(poseB, canonicalK);
|
|
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
params.setRankTolerance(0.01);
|
|
|
|
boost::shared_ptr<CameraSet<PinholePose<Cal3_S2>>> cameraRig(
|
|
new CameraSet<PinholePose<Cal3_S2>>()); // single camera in the rig
|
|
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3(), canonicalK));
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(cam1.project(landmarkL), x1);
|
|
smartFactor1->add(cam2.project(landmarkL), x2);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
|
|
Values groundTruth;
|
|
groundTruth.insert(x1, poseA);
|
|
groundTruth.insert(x2, poseB);
|
|
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
|
|
|
// get point
|
|
TriangulationResult point = smartFactor1->point();
|
|
EXPECT(point.valid()); // valid triangulation
|
|
EXPECT(assert_equal(landmarkL, *point, 1e-7));
|
|
}
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionFactorP, 2poses_sphericalCamera_rankTol) {
|
|
typedef SphericalCamera Camera;
|
|
typedef SmartProjectionRigFactor<Camera> SmartRigFactor;
|
|
EmptyCal::shared_ptr emptyK(new EmptyCal());
|
|
Pose3 poseA = Pose3(
|
|
Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
|
|
Point3(0.0, 0.0, 0.0)); // with z pointing along x axis of global frame
|
|
Pose3 poseB = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
|
|
Point3(0.0, -0.1, 0.0)); // 10cm to the right of poseA
|
|
Point3 landmarkL = Point3(5.0, 0.0, 0.0); // 5m in front of poseA
|
|
|
|
Camera cam1(poseA);
|
|
Camera cam2(poseB);
|
|
|
|
boost::shared_ptr<CameraSet<SphericalCamera>> cameraRig(
|
|
new CameraSet<SphericalCamera>()); // single camera in the rig
|
|
cameraRig->push_back(SphericalCamera(Pose3(), emptyK));
|
|
|
|
// TRIANGULATION TEST WITH DEFAULT RANK TOL
|
|
{ // rankTol = 1 or 0.1 gives a degenerate point, which is undesirable for a
|
|
// point 5m away and 10cm baseline
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
params.setRankTolerance(0.1);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(cam1.project(landmarkL), x1);
|
|
smartFactor1->add(cam2.project(landmarkL), x2);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
|
|
Values groundTruth;
|
|
groundTruth.insert(x1, poseA);
|
|
groundTruth.insert(x2, poseB);
|
|
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
|
|
|
// get point
|
|
TriangulationResult point = smartFactor1->point();
|
|
EXPECT(point.degenerate()); // not enough parallax
|
|
}
|
|
// SAME TEST WITH SMALLER RANK TOL
|
|
{ // rankTol = 0.01 gives a valid point
|
|
// By playing with this test, we can show we can triangulate also with a
|
|
// baseline of 5cm (even for points far away, >100m), but the test fails
|
|
// when the baseline becomes 1cm. This suggests using rankTol = 0.01 and
|
|
// setting a reasonable max landmark distance to obtain best results.
|
|
SmartProjectionParams params(
|
|
gtsam::HESSIAN,
|
|
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
|
|
params.setRankTolerance(0.01);
|
|
|
|
SmartRigFactor::shared_ptr smartFactor1(
|
|
new SmartRigFactor(model, cameraRig, params));
|
|
smartFactor1->add(cam1.project(landmarkL), x1);
|
|
smartFactor1->add(cam2.project(landmarkL), x2);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
|
|
Values groundTruth;
|
|
groundTruth.insert(x1, poseA);
|
|
groundTruth.insert(x2, poseB);
|
|
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
|
|
|
// get point
|
|
TriangulationResult point = smartFactor1->point();
|
|
EXPECT(point.valid()); // valid triangulation
|
|
EXPECT(assert_equal(landmarkL, *point, 1e-7));
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|