411 lines
14 KiB
C++
411 lines
14 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testGncOptimizer.cpp
|
|
* @brief Unit tests for GncOptimizer class
|
|
* @author Jingnan Shi
|
|
* @author Luca Carlone
|
|
* @author Frank Dellaert
|
|
*
|
|
* Implementation of the paper: Yang, Antonante, Tzoumas, Carlone, "Graduated Non-Convexity for Robust Spatial Perception:
|
|
* From Non-Minimal Solvers to Global Outlier Rejection", RAL, 2020. (arxiv version: https://arxiv.org/pdf/1909.08605.pdf)
|
|
*/
|
|
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <tests/smallExample.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
static double tol = 1e-7;
|
|
|
|
/* ************************************************************************* */
|
|
template <class BaseOptimizerParameters>
|
|
class GncParams {
|
|
public:
|
|
|
|
/** See NonlinearOptimizerParams::verbosity */
|
|
enum RobustLossType {
|
|
GM /*Geman McClure*/, TLS /*Truncated least squares*/
|
|
};
|
|
|
|
// using BaseOptimizer = GaussNewtonOptimizer; // BaseOptimizerParameters::OptimizerType;
|
|
|
|
GncParams(const BaseOptimizerParameters& baseOptimizerParams):
|
|
baseOptimizerParams(baseOptimizerParams),
|
|
lossType(GM), /* default loss*/
|
|
maxIterations(100), /* maximum number of iterations*/
|
|
barcSq(1.0), /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
|
|
muStep(1.4){}/* multiplicative factor to reduce/increase the mu in gnc */
|
|
|
|
// default constructor
|
|
GncParams(): baseOptimizerParams() {}
|
|
|
|
BaseOptimizerParameters baseOptimizerParams;
|
|
/// any other specific GNC parameters:
|
|
RobustLossType lossType;
|
|
size_t maxIterations;
|
|
double barcSq;
|
|
double muStep;
|
|
|
|
void setLossType(RobustLossType type){ lossType = type; }
|
|
void setMaxIterations(size_t maxIter){
|
|
std::cout
|
|
<< "setMaxIterations: changing the max number of iterations might lead to less accurate solutions and is not recommended! "
|
|
<< std::endl;
|
|
maxIterations = maxIter;
|
|
}
|
|
void setInlierThreshold(double inth){ barcSq = inth; }
|
|
void setMuStep(double step){ muStep = step; }
|
|
|
|
/// equals
|
|
bool equals(const GncParams& other, double tol = 1e-9) const {
|
|
return baseOptimizerParams.equals(other.baseOptimizerParams)
|
|
&& lossType == other.lossType
|
|
&& maxIterations == other.maxIterations
|
|
&& std::fabs(barcSq - other.barcSq) <= tol
|
|
&& std::fabs(muStep - other.muStep) <= tol;
|
|
}
|
|
|
|
/// print function
|
|
void print(const std::string& str) const {
|
|
std::cout << str << "\n";
|
|
switch(lossType) {
|
|
case GM: std::cout << "lossType: Geman McClure" << "\n"; break;
|
|
default:
|
|
throw std::runtime_error(
|
|
"GncParams::print: unknown loss type.");
|
|
}
|
|
std::cout << "maxIterations: " << maxIterations << "\n";
|
|
std::cout << "barcSq: " << barcSq << "\n";
|
|
std::cout << "muStep: " << muStep << "\n";
|
|
baseOptimizerParams.print(str);
|
|
}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
template<class GncParameters>
|
|
class GncOptimizer {
|
|
public:
|
|
// types etc
|
|
|
|
private:
|
|
NonlinearFactorGraph nfg_;
|
|
Values state_;
|
|
GncParameters params_;
|
|
|
|
public:
|
|
GncOptimizer(const NonlinearFactorGraph& graph,
|
|
const Values& initialValues, const GncParameters& params = GncParameters()) :
|
|
nfg_(graph), state_(initialValues), params_(params) {
|
|
// TODO: Check that all noise models are Gaussian
|
|
}
|
|
|
|
NonlinearFactorGraph getFactors() const { return NonlinearFactorGraph(nfg_); }
|
|
Values getState() const { return Values(state_); }
|
|
GncParameters getParams() const { return GncParameters(params_); }
|
|
|
|
/// implement GNC main loop, including graduating nonconvexity with mu
|
|
Values optimize() {
|
|
// start by assuming all measurements are inliers
|
|
Vector weights = Vector::Ones(nfg_.size());
|
|
GaussNewtonOptimizer baseOptimizer(nfg_,state_);
|
|
Values result = baseOptimizer.optimize();
|
|
double mu = initializeMu();
|
|
for(size_t iter=0; iter < params_.maxIterations; iter++){
|
|
// weights update
|
|
weights = calculateWeights(result, mu);
|
|
|
|
// variable/values update
|
|
NonlinearFactorGraph graph_iter = this->makeGraph(weights);
|
|
GaussNewtonOptimizer baseOptimizer_iter(graph_iter, state_);
|
|
Values result = baseOptimizer.optimize();
|
|
|
|
// stopping condition
|
|
if( checkMuConvergence(mu) ) { break; }
|
|
|
|
// otherwise update mu
|
|
mu = updateMu(mu);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// initialize the gnc parameter mu such that loss is approximately convex
|
|
double initializeMu() const {
|
|
// compute largest error across all factors
|
|
double rmax_sq = 0.0;
|
|
for (size_t i = 0; i < nfg_.size(); i++) {
|
|
if(nfg_[i]){
|
|
rmax_sq = std::max(rmax_sq, nfg_[i]->error(state_));
|
|
}
|
|
}
|
|
// set initial mu
|
|
switch(params_.lossType) {
|
|
case GncParameters::GM:
|
|
return 2*rmax_sq / params_.barcSq; // initial mu
|
|
default:
|
|
throw std::runtime_error(
|
|
"GncOptimizer::initializeMu: called with unknown loss type.");
|
|
}
|
|
}
|
|
|
|
/// update the gnc parameter mu to gradually increase nonconvexity
|
|
double updateMu(const double mu) const {
|
|
switch(params_.lossType) {
|
|
case GncParameters::GM:
|
|
return std::max(1.0 , mu / params_.muStep); // reduce mu, but saturate at 1
|
|
default:
|
|
throw std::runtime_error(
|
|
"GncOptimizer::updateMu: called with unknown loss type.");
|
|
}
|
|
}
|
|
|
|
/// check if we have reached the value of mu for which the surrogate loss matches the original loss
|
|
bool checkMuConvergence(const double mu) const {
|
|
switch(params_.lossType) {
|
|
case GncParameters::GM:
|
|
return std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
|
|
default:
|
|
throw std::runtime_error(
|
|
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
|
|
}
|
|
}
|
|
|
|
/// create a graph where each factor is weighted by the gnc weights
|
|
NonlinearFactorGraph makeGraph(const Vector& weights) const {
|
|
return NonlinearFactorGraph(nfg_);
|
|
}
|
|
|
|
/// calculate gnc weights
|
|
Vector calculateWeights(const Values currentEstimate, const double mu){
|
|
Vector weights = Vector::Zero(nfg_.size());
|
|
switch(params_.lossType) {
|
|
case GncParameters::GM: // use eq (12) in GNC paper
|
|
for (size_t k = 0; k < nfg_.size(); k++) {
|
|
if(nfg_[k]){
|
|
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
|
|
weights[k] = std::pow( ( mu*mu )/( u2_k + mu*mu ) , 2);
|
|
}
|
|
}
|
|
return weights;
|
|
default:
|
|
throw std::runtime_error(
|
|
"GncOptimizer::calculateWeights: called with unknown loss type.");
|
|
}
|
|
}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GncOptimizer, gncParamsConstructor) {
|
|
|
|
//check params are correctly parsed
|
|
LevenbergMarquardtParams lmParams;
|
|
GncParams<LevenbergMarquardtParams> gncParams1(lmParams);
|
|
CHECK(lmParams.equals(gncParams1.baseOptimizerParams));
|
|
|
|
// check also default constructor
|
|
GncParams<LevenbergMarquardtParams> gncParams1b;
|
|
CHECK(lmParams.equals(gncParams1b.baseOptimizerParams));
|
|
|
|
// and check params become different if we change lmParams
|
|
lmParams.setVerbosity("DELTA");
|
|
CHECK(! lmParams.equals(gncParams1.baseOptimizerParams));
|
|
|
|
// and same for GN
|
|
GaussNewtonParams gnParams;
|
|
GncParams<GaussNewtonParams> gncParams2(gnParams);
|
|
CHECK(gnParams.equals(gncParams2.baseOptimizerParams));
|
|
|
|
// check default constructor
|
|
GncParams<GaussNewtonParams> gncParams2b;
|
|
CHECK(gnParams.equals(gncParams2b.baseOptimizerParams));
|
|
|
|
// change something at the gncParams level
|
|
GncParams<GaussNewtonParams> gncParams2c(gncParams2b);
|
|
gncParams2c.setLossType(GncParams<GaussNewtonParams>::RobustLossType::TLS);
|
|
CHECK(! gncParams2c.equals(gncParams2b.baseOptimizerParams));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GncOptimizer, gncConstructor) {
|
|
// has to have Gaussian noise models !
|
|
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
|
|
|
|
Point2 p0(3, 3);
|
|
Values initial;
|
|
initial.insert(X(1), p0);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
|
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
|
|
|
CHECK(gnc.getFactors().equals(fg));
|
|
CHECK(gnc.getState().equals(initial));
|
|
CHECK(gnc.getParams().equals(gncParams));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GncOptimizer, initializeMu) {
|
|
// has to have Gaussian noise models !
|
|
auto fg = example::createReallyNonlinearFactorGraph();
|
|
|
|
Point2 p0(3, 3);
|
|
Values initial;
|
|
initial.insert(X(1), p0);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
|
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
|
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
|
EXPECT_DOUBLES_EQUAL(gnc.initializeMu(), 2 * 198.999, 1e-3); // according to rmk 5 in the gnc paper: m0 = 2 rmax^2 / barcSq (barcSq=1 in this example)
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GncOptimizer, updateMu) {
|
|
// has to have Gaussian noise models !
|
|
auto fg = example::createReallyNonlinearFactorGraph();
|
|
|
|
Point2 p0(3, 3);
|
|
Values initial;
|
|
initial.insert(X(1), p0);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
|
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
|
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
|
|
|
double mu = 5.0;
|
|
EXPECT_DOUBLES_EQUAL(gnc.updateMu(mu), mu / 1.4, tol);
|
|
|
|
// check it correctly saturates to 1 for GM
|
|
mu = 1.2;
|
|
EXPECT_DOUBLES_EQUAL(gnc.updateMu(mu), 1.0, tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GncOptimizer, checkMuConvergence) {
|
|
// has to have Gaussian noise models !
|
|
auto fg = example::createReallyNonlinearFactorGraph();
|
|
|
|
Point2 p0(3, 3);
|
|
Values initial;
|
|
initial.insert(X(1), p0);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
|
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
|
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
|
|
|
double mu = 1.0;
|
|
CHECK(gnc.checkMuConvergence(mu));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GncOptimizer, calculateWeights) {
|
|
// has to have Gaussian noise models !
|
|
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
|
|
|
|
Point2 p0(0, 0);
|
|
Values initial;
|
|
initial.insert(X(1), p0);
|
|
|
|
// we have 4 factors, 3 with zero errors (inliers), 1 with error 50 = 0.5 * 1/sigma^2 || [1;0] - [0;0] ||^2 (outlier)
|
|
Vector weights_expected = Vector::Zero(4);
|
|
weights_expected[0] = 1.0; // zero error
|
|
weights_expected[1] = 1.0; // zero error
|
|
weights_expected[2] = 1.0; // zero error
|
|
weights_expected[3] = std::pow(1.0 / (50.0 + 1.0),2); // outlier, error = 50
|
|
|
|
GaussNewtonParams gnParams;
|
|
GncParams<GaussNewtonParams> gncParams(gnParams);
|
|
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
|
double mu = 1.0;
|
|
Vector weights_actual = gnc.calculateWeights(initial,mu);
|
|
CHECK(assert_equal(weights_expected, weights_actual, tol));
|
|
}
|
|
|
|
/* ************************************************************************* *
|
|
TEST(GncOptimizer, makeGraph) {
|
|
// has to have Gaussian noise models !
|
|
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
|
|
|
|
Point2 p0(3, 3);
|
|
Values initial;
|
|
initial.insert(X(1), p0);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
|
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
|
|
|
// NonlinearFactorGraph actual = gnc.makeGraph(initial);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GncOptimizer, optimizeSimple) {
|
|
// has to have Gaussian noise models !
|
|
auto fg = example::createReallyNonlinearFactorGraph();
|
|
|
|
Point2 p0(3, 3);
|
|
Values initial;
|
|
initial.insert(X(1), p0);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
|
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
|
|
|
Values actual = gnc.optimize();
|
|
DOUBLES_EQUAL(0, fg.error(actual), tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GncOptimizer, optimize) {
|
|
// has to have Gaussian noise models !
|
|
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
|
|
|
|
Point2 p0(1, 0);
|
|
Values initial;
|
|
initial.insert(X(1), p0);
|
|
|
|
// try with nonrobust cost function and standard GN
|
|
GaussNewtonParams gnParams;
|
|
GaussNewtonOptimizer gn(fg, initial, gnParams);
|
|
Values gn_results = gn.optimize();
|
|
// converges to incorrect point due to lack of robustness to an outlier, ideal solution is Point2(0,0)
|
|
CHECK(assert_equal(Point2(0.25,0.0), gn_results.at<Point2>(X(1)), 1e-3));
|
|
|
|
// try with robust loss function and standard GN
|
|
auto fg_robust = example::sharedRobustFactorGraphWithOutliers(); // same as fg, but with factors wrapped in Geman McClure losses
|
|
GaussNewtonOptimizer gn2(fg_robust, initial, gnParams);
|
|
Values gn2_results = gn2.optimize();
|
|
// converges to incorrect point, this time due to the nonconvexity of the loss
|
|
CHECK(assert_equal(Point2(0.999706,0.0), gn2_results.at<Point2>(X(1)), 1e-3));
|
|
|
|
// .. but graduated nonconvexity ensures both robustness and convergence in the face of nonconvexity
|
|
GncParams<GaussNewtonParams> gncParams(gnParams);
|
|
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
|
Values gnc_result = gnc.optimize();
|
|
CHECK(assert_equal(Point2(0.0,0.0), gnc_result.at<Point2>(X(1)), 1e-3));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|