gtsam/tests/testGncOptimizer.cpp

411 lines
14 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGncOptimizer.cpp
* @brief Unit tests for GncOptimizer class
* @author Jingnan Shi
* @author Luca Carlone
* @author Frank Dellaert
*
* Implementation of the paper: Yang, Antonante, Tzoumas, Carlone, "Graduated Non-Convexity for Robust Spatial Perception:
* From Non-Minimal Solvers to Global Outlier Rejection", RAL, 2020. (arxiv version: https://arxiv.org/pdf/1909.08605.pdf)
*/
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <tests/smallExample.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using symbol_shorthand::X;
using symbol_shorthand::L;
static double tol = 1e-7;
/* ************************************************************************* */
template <class BaseOptimizerParameters>
class GncParams {
public:
/** See NonlinearOptimizerParams::verbosity */
enum RobustLossType {
GM /*Geman McClure*/, TLS /*Truncated least squares*/
};
// using BaseOptimizer = GaussNewtonOptimizer; // BaseOptimizerParameters::OptimizerType;
GncParams(const BaseOptimizerParameters& baseOptimizerParams):
baseOptimizerParams(baseOptimizerParams),
lossType(GM), /* default loss*/
maxIterations(100), /* maximum number of iterations*/
barcSq(1.0), /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
muStep(1.4){}/* multiplicative factor to reduce/increase the mu in gnc */
// default constructor
GncParams(): baseOptimizerParams() {}
BaseOptimizerParameters baseOptimizerParams;
/// any other specific GNC parameters:
RobustLossType lossType;
size_t maxIterations;
double barcSq;
double muStep;
void setLossType(RobustLossType type){ lossType = type; }
void setMaxIterations(size_t maxIter){
std::cout
<< "setMaxIterations: changing the max number of iterations might lead to less accurate solutions and is not recommended! "
<< std::endl;
maxIterations = maxIter;
}
void setInlierThreshold(double inth){ barcSq = inth; }
void setMuStep(double step){ muStep = step; }
/// equals
bool equals(const GncParams& other, double tol = 1e-9) const {
return baseOptimizerParams.equals(other.baseOptimizerParams)
&& lossType == other.lossType
&& maxIterations == other.maxIterations
&& std::fabs(barcSq - other.barcSq) <= tol
&& std::fabs(muStep - other.muStep) <= tol;
}
/// print function
void print(const std::string& str) const {
std::cout << str << "\n";
switch(lossType) {
case GM: std::cout << "lossType: Geman McClure" << "\n"; break;
default:
throw std::runtime_error(
"GncParams::print: unknown loss type.");
}
std::cout << "maxIterations: " << maxIterations << "\n";
std::cout << "barcSq: " << barcSq << "\n";
std::cout << "muStep: " << muStep << "\n";
baseOptimizerParams.print(str);
}
};
/* ************************************************************************* */
template<class GncParameters>
class GncOptimizer {
public:
// types etc
private:
NonlinearFactorGraph nfg_;
Values state_;
GncParameters params_;
public:
GncOptimizer(const NonlinearFactorGraph& graph,
const Values& initialValues, const GncParameters& params = GncParameters()) :
nfg_(graph), state_(initialValues), params_(params) {
// TODO: Check that all noise models are Gaussian
}
NonlinearFactorGraph getFactors() const { return NonlinearFactorGraph(nfg_); }
Values getState() const { return Values(state_); }
GncParameters getParams() const { return GncParameters(params_); }
/// implement GNC main loop, including graduating nonconvexity with mu
Values optimize() {
// start by assuming all measurements are inliers
Vector weights = Vector::Ones(nfg_.size());
GaussNewtonOptimizer baseOptimizer(nfg_,state_);
Values result = baseOptimizer.optimize();
double mu = initializeMu();
for(size_t iter=0; iter < params_.maxIterations; iter++){
// weights update
weights = calculateWeights(result, mu);
// variable/values update
NonlinearFactorGraph graph_iter = this->makeGraph(weights);
GaussNewtonOptimizer baseOptimizer_iter(graph_iter, state_);
Values result = baseOptimizer.optimize();
// stopping condition
if( checkMuConvergence(mu) ) { break; }
// otherwise update mu
mu = updateMu(mu);
}
return result;
}
/// initialize the gnc parameter mu such that loss is approximately convex
double initializeMu() const {
// compute largest error across all factors
double rmax_sq = 0.0;
for (size_t i = 0; i < nfg_.size(); i++) {
if(nfg_[i]){
rmax_sq = std::max(rmax_sq, nfg_[i]->error(state_));
}
}
// set initial mu
switch(params_.lossType) {
case GncParameters::GM:
return 2*rmax_sq / params_.barcSq; // initial mu
default:
throw std::runtime_error(
"GncOptimizer::initializeMu: called with unknown loss type.");
}
}
/// update the gnc parameter mu to gradually increase nonconvexity
double updateMu(const double mu) const {
switch(params_.lossType) {
case GncParameters::GM:
return std::max(1.0 , mu / params_.muStep); // reduce mu, but saturate at 1
default:
throw std::runtime_error(
"GncOptimizer::updateMu: called with unknown loss type.");
}
}
/// check if we have reached the value of mu for which the surrogate loss matches the original loss
bool checkMuConvergence(const double mu) const {
switch(params_.lossType) {
case GncParameters::GM:
return std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
default:
throw std::runtime_error(
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
}
}
/// create a graph where each factor is weighted by the gnc weights
NonlinearFactorGraph makeGraph(const Vector& weights) const {
return NonlinearFactorGraph(nfg_);
}
/// calculate gnc weights
Vector calculateWeights(const Values currentEstimate, const double mu){
Vector weights = Vector::Zero(nfg_.size());
switch(params_.lossType) {
case GncParameters::GM: // use eq (12) in GNC paper
for (size_t k = 0; k < nfg_.size(); k++) {
if(nfg_[k]){
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
weights[k] = std::pow( ( mu*mu )/( u2_k + mu*mu ) , 2);
}
}
return weights;
default:
throw std::runtime_error(
"GncOptimizer::calculateWeights: called with unknown loss type.");
}
}
};
/* ************************************************************************* */
TEST(GncOptimizer, gncParamsConstructor) {
//check params are correctly parsed
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams1(lmParams);
CHECK(lmParams.equals(gncParams1.baseOptimizerParams));
// check also default constructor
GncParams<LevenbergMarquardtParams> gncParams1b;
CHECK(lmParams.equals(gncParams1b.baseOptimizerParams));
// and check params become different if we change lmParams
lmParams.setVerbosity("DELTA");
CHECK(! lmParams.equals(gncParams1.baseOptimizerParams));
// and same for GN
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams2(gnParams);
CHECK(gnParams.equals(gncParams2.baseOptimizerParams));
// check default constructor
GncParams<GaussNewtonParams> gncParams2b;
CHECK(gnParams.equals(gncParams2b.baseOptimizerParams));
// change something at the gncParams level
GncParams<GaussNewtonParams> gncParams2c(gncParams2b);
gncParams2c.setLossType(GncParams<GaussNewtonParams>::RobustLossType::TLS);
CHECK(! gncParams2c.equals(gncParams2b.baseOptimizerParams));
}
/* ************************************************************************* */
TEST(GncOptimizer, gncConstructor) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
CHECK(gnc.getFactors().equals(fg));
CHECK(gnc.getState().equals(initial));
CHECK(gnc.getParams().equals(gncParams));
}
/* ************************************************************************* */
TEST(GncOptimizer, initializeMu) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
EXPECT_DOUBLES_EQUAL(gnc.initializeMu(), 2 * 198.999, 1e-3); // according to rmk 5 in the gnc paper: m0 = 2 rmax^2 / barcSq (barcSq=1 in this example)
}
/* ************************************************************************* */
TEST(GncOptimizer, updateMu) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
double mu = 5.0;
EXPECT_DOUBLES_EQUAL(gnc.updateMu(mu), mu / 1.4, tol);
// check it correctly saturates to 1 for GM
mu = 1.2;
EXPECT_DOUBLES_EQUAL(gnc.updateMu(mu), 1.0, tol);
}
/* ************************************************************************* */
TEST(GncOptimizer, checkMuConvergence) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
double mu = 1.0;
CHECK(gnc.checkMuConvergence(mu));
}
/* ************************************************************************* */
TEST(GncOptimizer, calculateWeights) {
// has to have Gaussian noise models !
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
Point2 p0(0, 0);
Values initial;
initial.insert(X(1), p0);
// we have 4 factors, 3 with zero errors (inliers), 1 with error 50 = 0.5 * 1/sigma^2 || [1;0] - [0;0] ||^2 (outlier)
Vector weights_expected = Vector::Zero(4);
weights_expected[0] = 1.0; // zero error
weights_expected[1] = 1.0; // zero error
weights_expected[2] = 1.0; // zero error
weights_expected[3] = std::pow(1.0 / (50.0 + 1.0),2); // outlier, error = 50
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
double mu = 1.0;
Vector weights_actual = gnc.calculateWeights(initial,mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
}
/* ************************************************************************* *
TEST(GncOptimizer, makeGraph) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
// NonlinearFactorGraph actual = gnc.makeGraph(initial);
}
/* ************************************************************************* */
TEST(GncOptimizer, optimizeSimple) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
Values actual = gnc.optimize();
DOUBLES_EQUAL(0, fg.error(actual), tol);
}
/* ************************************************************************* */
TEST(GncOptimizer, optimize) {
// has to have Gaussian noise models !
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
Point2 p0(1, 0);
Values initial;
initial.insert(X(1), p0);
// try with nonrobust cost function and standard GN
GaussNewtonParams gnParams;
GaussNewtonOptimizer gn(fg, initial, gnParams);
Values gn_results = gn.optimize();
// converges to incorrect point due to lack of robustness to an outlier, ideal solution is Point2(0,0)
CHECK(assert_equal(Point2(0.25,0.0), gn_results.at<Point2>(X(1)), 1e-3));
// try with robust loss function and standard GN
auto fg_robust = example::sharedRobustFactorGraphWithOutliers(); // same as fg, but with factors wrapped in Geman McClure losses
GaussNewtonOptimizer gn2(fg_robust, initial, gnParams);
Values gn2_results = gn2.optimize();
// converges to incorrect point, this time due to the nonconvexity of the loss
CHECK(assert_equal(Point2(0.999706,0.0), gn2_results.at<Point2>(X(1)), 1e-3));
// .. but graduated nonconvexity ensures both robustness and convergence in the face of nonconvexity
GncParams<GaussNewtonParams> gncParams(gnParams);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0,0.0), gnc_result.at<Point2>(X(1)), 1e-3));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */