gtsam/cpp/smallExample.cpp

457 lines
12 KiB
C++

/**
* @file smallExample.cpp
* @brief Create small example with two poses and one landmark
* @brief smallExample
* @author Carlos Nieto
* @author Frank dellaert
*/
#include <iostream>
#include <string>
using namespace std;
#include "Ordering.h"
#include "Matrix.h"
#include "NonlinearFactor.h"
#include "ConstrainedLinearFactorGraph.h"
#include "smallExample.h"
#include "Point2Prior.h"
#include "Simulated2DOdometry.h"
#include "Simulated2DMeasurement.h"
#include "simulated2D.h"
// template definitions
#include "FactorGraph-inl.h"
#include "NonlinearFactorGraph-inl.h"
namespace gtsam {
typedef boost::shared_ptr<NonlinearFactor<VectorConfig> > shared;
/* ************************************************************************* */
boost::shared_ptr<const ExampleNonlinearFactorGraph> sharedNonlinearFactorGraph() {
// Create
boost::shared_ptr<ExampleNonlinearFactorGraph> nlfg(new ExampleNonlinearFactorGraph);
// prior on x1
double sigma1=0.1;
Vector mu(2); mu(0) = 0 ; mu(1) = 0;
shared f1(new Point2Prior(mu, sigma1, "x1"));
nlfg->push_back(f1);
// odometry between x1 and x2
double sigma2=0.1;
Vector z2(2); z2(0) = 1.5 ; z2(1) = 0;
shared f2(new Simulated2DOdometry(z2, sigma2, "x1", "x2"));
nlfg->push_back(f2);
// measurement between x1 and l1
double sigma3=0.2;
Vector z3(2); z3(0) = 0. ; z3(1) = -1.;
shared f3(new Simulated2DMeasurement(z3, sigma3, "x1", "l1"));
nlfg->push_back(f3);
// measurement between x2 and l1
double sigma4=0.2;
Vector z4(2); z4(0)= -1.5 ; z4(1) = -1.;
shared f4(new Simulated2DMeasurement(z4, sigma4, "x2", "l1"));
nlfg->push_back(f4);
return nlfg;
}
/* ************************************************************************* */
ExampleNonlinearFactorGraph createNonlinearFactorGraph() {
return *sharedNonlinearFactorGraph();
}
/* ************************************************************************* */
VectorConfig createConfig()
{
Vector v_x1(2); v_x1(0) = 0.; v_x1(1) = 0.;
Vector v_x2(2); v_x2(0) = 1.5; v_x2(1) = 0.;
Vector v_l1(2); v_l1(0) = 0.; v_l1(1) = -1.;
VectorConfig c;
c.insert("x1", v_x1);
c.insert("x2", v_x2);
c.insert("l1", v_l1);
return c;
}
/* ************************************************************************* */
boost::shared_ptr<const VectorConfig> sharedNoisyConfig()
{
Vector v_x1(2); v_x1(0) = 0.1; v_x1(1) = 0.1;
Vector v_x2(2); v_x2(0) = 1.4; v_x2(1) = 0.2;
Vector v_l1(2); v_l1(0) = 0.1; v_l1(1) = -1.1;
boost::shared_ptr<VectorConfig> c(new VectorConfig);
c->insert("x1", v_x1);
c->insert("x2", v_x2);
c->insert("l1", v_l1);
return c;
}
/* ************************************************************************* */
VectorConfig createNoisyConfig() {
return *sharedNoisyConfig();
}
/* ************************************************************************* */
VectorConfig createCorrectDelta() {
Vector v_x1(2); v_x1(0) = -0.1; v_x1(1) = -0.1;
Vector v_x2(2); v_x2(0) = 0.1; v_x2(1) = -0.2;
Vector v_l1(2); v_l1(0) = -0.1; v_l1(1) = 0.1;
VectorConfig c;
c.insert("x1", v_x1);
c.insert("x2", v_x2);
c.insert("l1", v_l1);
return c;
}
/* ************************************************************************* */
VectorConfig createZeroDelta() {
Vector v_x1(2); v_x1(0) = 0; v_x1(1) = 0;
Vector v_x2(2); v_x2(0) = 0; v_x2(1) = 0;
Vector v_l1(2); v_l1(0) = 0; v_l1(1) = 0;
VectorConfig c;
c.insert("x1", v_x1);
c.insert("x2", v_x2);
c.insert("l1", v_l1);
return c;
}
/* ************************************************************************* */
LinearFactorGraph createLinearFactorGraph()
{
VectorConfig c = createNoisyConfig();
// Create
LinearFactorGraph fg;
double sigma1 = 0.1;
// prior on x1
Matrix A11(2,2);
A11(0,0) = 1; A11(0,1) = 0;
A11(1,0) = 0; A11(1,1) = 1;
Vector b = - c["x1"];
LinearFactor::shared_ptr f1(new LinearFactor("x1", A11, b, sigma1));
fg.push_back(f1);
// odometry between x1 and x2
double sigma2 = 0.1;
Matrix A21(2,2);
A21(0,0) = -1 ; A21(0,1) = 0;
A21(1,0) = 0 ; A21(1,1) = -1;
Matrix A22(2,2);
A22(0,0) = 1 ; A22(0,1) = 0;
A22(1,0) = 0 ; A22(1,1) = 1;
// Vector b(2);
b(0) = 0.2 ; b(1) = -0.1;
LinearFactor::shared_ptr f2(new LinearFactor("x1", A21, "x2", A22, b, sigma2));
fg.push_back(f2);
// measurement between x1 and l1
double sigma3 = 0.2;
Matrix A31(2,2);
A31(0,0) = -1; A31(0,1) = 0;
A31(1,0) = 0; A31(1,1) = -1;
Matrix A32(2,2);
A32(0,0) = 1 ; A32(0,1) = 0;
A32(1,0) = 0 ; A32(1,1) = 1;
b(0) = 0 ; b(1) = 0.2;
LinearFactor::shared_ptr f3(new LinearFactor("x1", A31, "l1", A32, b, sigma3));
fg.push_back(f3);
// measurement between x2 and l1
double sigma4 = 0.2;
Matrix A41(2,2);
A41(0,0) = -1 ; A41(0,1) = 0;
A41(1,0) = 0 ; A41(1,1) = -1;
Matrix A42(2,2);
A42(0,0) = 1 ; A42(0,1) = 0;
A42(1,0) = 0 ; A42(1,1) = 1;
b(0)= -0.2 ; b(1) = 0.3;
LinearFactor::shared_ptr f4(new LinearFactor("x2", A41, "l1", A42, b, sigma4));
fg.push_back(f4);
return fg;
}
/* ************************************************************************* */
/** create small Chordal Bayes Net x <- y
* x y d
* 1 1 9
* 1 5
*/
GaussianBayesNet createSmallGaussianBayesNet()
{
Matrix R11 = Matrix_(1,1,1.0), S12 = Matrix_(1,1,1.0);
Matrix R22 = Matrix_(1,1,1.0);
Vector d1(1), d2(1);
d1(0) = 9; d2(0) = 5;
Vector tau(1); tau(0) = 1.0;
// define nodes and specify in reverse topological sort (i.e. parents last)
ConditionalGaussian::shared_ptr
Px_y(new ConditionalGaussian("x",d1,R11,"y",S12,tau)),
Py(new ConditionalGaussian("y",d2,R22,tau));
GaussianBayesNet cbn;
cbn.push_back(Px_y);
cbn.push_back(Py);
return cbn;
}
/* ************************************************************************* */
// Some nonlinear functions to optimize
/* ************************************************************************* */
namespace optimize {
Vector h(const Vector& v) {
double x = v(0);
return Vector_(2,cos(x),sin(x));
};
Matrix H(const Vector& v) {
double x = v(0);
return Matrix_(2,1,-sin(x),cos(x));
};
}
/* ************************************************************************* */
boost::shared_ptr<const ExampleNonlinearFactorGraph> sharedReallyNonlinearFactorGraph()
{
boost::shared_ptr<ExampleNonlinearFactorGraph> fg(new ExampleNonlinearFactorGraph);
Vector z = Vector_(2,1.0,0.0);
double sigma = 0.1;
boost::shared_ptr<NonlinearFactor1>
factor(new NonlinearFactor1(z,sigma,&optimize::h,"x",&optimize::H));
fg->push_back(factor);
return fg;
}
ExampleNonlinearFactorGraph createReallyNonlinearFactorGraph() {
return *sharedReallyNonlinearFactorGraph();
}
/* ************************************************************************* */
LinearFactorGraph createSmoother(int T) {
// Create
ExampleNonlinearFactorGraph nlfg;
VectorConfig poses;
// prior on x1
Vector x1 = zero(2);
string key1 = symbol('x', 1);
shared prior(new Point2Prior(x1, 1, key1));
nlfg.push_back(prior);
poses.insert(key1, x1);
for (int t = 2; t <= T; t++) {
// odometry between x_t and x_{t-1}
Vector odo = Vector_(2, 1.0, 0.0);
string key = symbol('x', t);
shared odometry(new Simulated2DOdometry(odo, 1, symbol('x', t - 1), key));
nlfg.push_back(odometry);
// measurement on x_t
double sigma3 = 0.2;
Vector z = Vector_(2, t, 0.0);
shared measurement(new Point2Prior(z, 1, key));
nlfg.push_back(measurement);
poses.insert(key, z);
}
LinearFactorGraph lfg = nlfg.linearize(poses);
return lfg;
}
/* ************************************************************************* */
ConstrainedLinearFactorGraph createSingleConstraintGraph() {
// create unary factor
// prior on "x", mean = [1,-1], sigma=0.1
double sigma = 0.1;
Matrix Ax = eye(2);
Vector b1(2);
b1(0) = 1.0;
b1(1) = -1.0;
LinearFactor::shared_ptr f1(new LinearFactor("x", Ax, b1, sigma));
// create binary constraint factor
// between "x" and "y", that is going to be the only factor on "y"
// |1 2||x_1| + |10 0||y_1| = |1|
// |2 1||x_2| |0 10||y_2| |2|
Matrix Ax1(2, 2);
Ax1(0, 0) = 1.0; Ax1(0, 1) = 2.0;
Ax1(1, 0) = 2.0; Ax1(1, 1) = 1.0;
Matrix Ay1 = eye(2) * 10;
Vector b2 = Vector_(2, 1.0, 2.0);
LinearConstraint::shared_ptr f2(
new LinearConstraint("x", Ax1, "y", Ay1, b2));
// construct the graph
ConstrainedLinearFactorGraph fg;
fg.push_back(f1);
fg.push_back_constraint(f2);
return fg;
}
/* ************************************************************************* */
ConstrainedLinearFactorGraph createMultiConstraintGraph() {
// unary factor 1
double sigma = 0.1;
Matrix A = eye(2);
Vector b = Vector_(2, -2.0, 2.0);
LinearFactor::shared_ptr lf1(new LinearFactor("x", A, b, sigma));
// constraint 1
Matrix A11(2,2);
A11(0,0) = 1.0 ; A11(0,1) = 2.0;
A11(1,0) = 2.0 ; A11(1,1) = 1.0;
Matrix A12(2,2);
A12(0,0) = 10.0 ; A12(0,1) = 0.0;
A12(1,0) = 0.0 ; A12(1,1) = 10.0;
Vector b1(2);
b1(0) = 1.0; b1(1) = 2.0;
LinearConstraint::shared_ptr lc1(new LinearConstraint("x", A11, "y", A12, b1));
// constraint 2
Matrix A21(2,2);
A21(0,0) = 3.0 ; A21(0,1) = 4.0;
A21(1,0) = -1.0 ; A21(1,1) = -2.0;
Matrix A22(2,2);
A22(0,0) = 1.0 ; A22(0,1) = 1.0;
A22(1,0) = 1.0 ; A22(1,1) = 2.0;
Vector b2(2);
b2(0) = 3.0; b2(1) = 4.0;
LinearConstraint::shared_ptr lc2(new LinearConstraint("x", A21, "z", A22, b2));
// construct the graph
ConstrainedLinearFactorGraph fg;
fg.push_back(lf1);
fg.push_back_constraint(lc1);
fg.push_back_constraint(lc2);
return fg;
}
/* ************************************************************************* */
//ConstrainedLinearFactorGraph createConstrainedLinearFactorGraph()
//{
// ConstrainedLinearFactorGraph graph;
//
// // add an equality factor
// Vector v1(2); v1(0)=1.;v1(1)=2.;
// LinearConstraint::shared_ptr f1(new LinearConstraint(v1, "x0"));
// graph.push_back_eq(f1);
//
// // add a normal linear factor
// Matrix A21 = -1 * eye(2);
//
// Matrix A22 = eye(2);
//
// Vector b(2);
// b(0) = 2 ; b(1) = 3;
//
// double sigma = 0.1;
// LinearFactor::shared_ptr f2(new LinearFactor("x0", A21/sigma, "x1", A22/sigma, b/sigma));
// graph.push_back(f2);
// return graph;
//}
/* ************************************************************************* */
// ConstrainedNonlinearFactorGraph<NonlinearFactor<VectorConfig> , VectorConfig> createConstrainedNonlinearFactorGraph() {
// ConstrainedNonlinearFactorGraph<NonlinearFactor<VectorConfig> , VectorConfig> graph;
// VectorConfig c = createConstrainedConfig();
//
// // equality constraint for initial pose
// LinearConstraint::shared_ptr f1(new LinearConstraint(c["x0"], "x0"));
// graph.push_back_eq(f1);
//
// // odometry between x0 and x1
// double sigma = 0.1;
// shared f2(new Simulated2DOdometry(c["x1"] - c["x0"], sigma, "x0", "x1"));
// graph.push_back(f2); // TODO
// return graph;
// }
/* ************************************************************************* */
//VectorConfig createConstrainedConfig()
//{
// VectorConfig config;
//
// Vector x0(2); x0(0)=1.0; x0(1)=2.0;
// config.insert("x0", x0);
//
// Vector x1(2); x1(0)=3.0; x1(1)=5.0;
// config.insert("x1", x1);
//
// return config;
//}
/* ************************************************************************* */
//VectorConfig createConstrainedLinConfig()
//{
// VectorConfig config;
//
// Vector x0(2); x0(0)=1.0; x0(1)=2.0; // value doesn't actually matter
// config.insert("x0", x0);
//
// Vector x1(2); x1(0)=2.3; x1(1)=5.3;
// config.insert("x1", x1);
//
// return config;
//}
/* ************************************************************************* */
//VectorConfig createConstrainedCorrectDelta()
//{
// VectorConfig config;
//
// Vector x0(2); x0(0)=0.; x0(1)=0.;
// config.insert("x0", x0);
//
// Vector x1(2); x1(0)= 0.7; x1(1)= -0.3;
// config.insert("x1", x1);
//
// return config;
//}
/* ************************************************************************* */
//ConstrainedGaussianBayesNet createConstrainedGaussianBayesNet()
//{
// ConstrainedGaussianBayesNet cbn;
// VectorConfig c = createConstrainedConfig();
//
// // add regular conditional gaussian - no parent
// Matrix R = eye(2);
// Vector d = c["x1"];
// double sigma = 0.1;
// ConditionalGaussian::shared_ptr f1(new ConditionalGaussian(d/sigma, R/sigma));
// cbn.insert("x1", f1);
//
// // add a delta function to the cbn
// ConstrainedConditionalGaussian::shared_ptr f2(new ConstrainedConditionalGaussian); //(c["x0"], "x0"));
// cbn.insert_df("x0", f2);
//
// return cbn;
//}
} // namespace gtsam