102 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
/**
 | 
						|
 * @file    Pose3SLAMExampleExpressions_BearingRangeWithTransform.cpp
 | 
						|
 * @brief   A simultaneous optimization of trajectory, landmarks and sensor-pose with respect to body-pose using bearing-range measurements done with Expressions
 | 
						|
 * @author  Thomas Horstink
 | 
						|
 * @date    January 4th, 2019
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/geometry/BearingRange.h>
 | 
						|
#include <gtsam/slam/expressions.h>
 | 
						|
#include <gtsam/nonlinear/ExpressionFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
#include <examples/SFMdata.h>
 | 
						|
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
typedef BearingRange<Pose3, Point3> BearingRange3D;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main(int argc, char* argv[]) {
 | 
						|
 | 
						|
  // Move around so the whole state (including the sensor tf) is observable
 | 
						|
  Pose3 init_pose = Pose3();
 | 
						|
  Pose3 delta_pose1 = Pose3(Rot3().Yaw(2*M_PI/8).Pitch(M_PI/8), Point3(1, 0, 0));
 | 
						|
  Pose3 delta_pose2 = Pose3(Rot3().Pitch(-M_PI/8), Point3(1, 0, 0));
 | 
						|
  Pose3 delta_pose3 = Pose3(Rot3().Yaw(-2*M_PI/8), Point3(1, 0, 0));
 | 
						|
 | 
						|
  int steps = 4;
 | 
						|
  auto poses  = createPoses(init_pose, delta_pose1, steps);
 | 
						|
  auto poses2 = createPoses(init_pose, delta_pose2, steps);
 | 
						|
  auto poses3 = createPoses(init_pose, delta_pose3, steps);
 | 
						|
 | 
						|
  // Concatenate poses to create trajectory
 | 
						|
  poses.insert( poses.end(), poses2.begin(), poses2.end() );
 | 
						|
  poses.insert( poses.end(), poses3.begin(), poses3.end() );  // std::vector of Pose3
 | 
						|
  auto points = createPoints();                               // std::vector of Point3 
 | 
						|
 | 
						|
  // (ground-truth) sensor pose in body frame, further an unknown variable
 | 
						|
  Pose3 body_T_sensor_gt(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | 
						|
  
 | 
						|
  // The graph
 | 
						|
  ExpressionFactorGraph graph;
 | 
						|
  
 | 
						|
  // Specify uncertainty on first pose prior and also for between factor (simplicity reasons)
 | 
						|
  auto poseNoise = noiseModel::Diagonal::Sigmas((Vector(6)<<0.3,0.3,0.3,0.1,0.1,0.1).finished());
 | 
						|
  
 | 
						|
  // Uncertainty bearing range measurement;
 | 
						|
  auto bearingRangeNoise = noiseModel::Diagonal::Sigmas((Vector(3)<<0.01,0.03,0.05).finished());
 | 
						|
  
 | 
						|
  // Expressions for body-frame at key 0 and sensor-tf
 | 
						|
  Pose3_ x_('x', 0);
 | 
						|
  Pose3_ body_T_sensor_('T', 0);
 | 
						|
  
 | 
						|
  // Add a prior on the body-pose
 | 
						|
  graph.addExpressionFactor(x_, poses[0], poseNoise); 
 | 
						|
  
 | 
						|
  // Simulated measurements from pose
 | 
						|
  for (size_t i = 0; i < poses.size(); ++i) {
 | 
						|
    auto world_T_sensor = poses[i].compose(body_T_sensor_gt);
 | 
						|
    for (size_t j = 0; j < points.size(); ++j) {
 | 
						|
      
 | 
						|
      // This expression is the key feature of this example: it creates a differentiable expression of the measurement after being displaced by sensor transform.
 | 
						|
      auto prediction_ = Expression<BearingRange3D>( BearingRange3D::Measure, Pose3_('x',i)*body_T_sensor_, Point3_('l',j));
 | 
						|
      
 | 
						|
      // Create a *perfect* measurement
 | 
						|
      auto measurement = BearingRange3D(world_T_sensor.bearing(points[j]), world_T_sensor.range(points[j]));
 | 
						|
      
 | 
						|
      // Add factor
 | 
						|
      graph.addExpressionFactor(prediction_, measurement, bearingRangeNoise);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // and add a between factor to the graph
 | 
						|
    if (i > 0)
 | 
						|
    {
 | 
						|
      // And also we have a *perfect* measurement for the between factor.
 | 
						|
      graph.addExpressionFactor(between(Pose3_('x', i-1),Pose3_('x', i)), poses[i-1].between(poses[i]), poseNoise); 
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create perturbed initial
 | 
						|
  Values initial;
 | 
						|
  Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
 | 
						|
  for (size_t i = 0; i < poses.size(); ++i)
 | 
						|
    initial.insert(Symbol('x', i), poses[i].compose(delta)); 
 | 
						|
  for (size_t j = 0; j < points.size(); ++j)
 | 
						|
    initial.insert<Point3>(Symbol('l', j), points[j] + Point3(-0.25, 0.20, 0.15));
 | 
						|
  
 | 
						|
  // Initialize body_T_sensor wrongly (because we do not know!)
 | 
						|
  initial.insert<Pose3>(Symbol('T',0), Pose3()); 
 | 
						|
 | 
						|
  std::cout << "initial error: " << graph.error(initial) << std::endl;
 | 
						|
  Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
 | 
						|
  std::cout << "final error: " << graph.error(result) << std::endl;
 | 
						|
 | 
						|
  initial.at<Pose3>(Symbol('T',0)).print("\nInitial estimate body_T_sensor\n"); /* initial sensor_P_body estimate */
 | 
						|
  result.at<Pose3>(Symbol('T',0)).print("\nFinal estimate body_T_sensor\n");    /* optimized sensor_P_body estimate */
 | 
						|
  body_T_sensor_gt.print("\nGround truth body_T_sensor\n");                     /* sensor_P_body ground truth */
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
/* ************************************************************************* */ |