gtsam/python/gtsam/examples/SFMExample_bal.py

121 lines
3.7 KiB
Python

"""
GTSAM Copyright 2010, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file
Author: Frank Dellaert (Python: Akshay Krishnan, John Lambert)
"""
import argparse
import logging
import sys
import matplotlib.pyplot as plt
import numpy as np
import gtsam
from gtsam import (
GeneralSFMFactorCal3Bundler,
PinholeCameraCal3Bundler,
PriorFactorPinholeCameraCal3Bundler,
readBal,
symbol_shorthand
)
C = symbol_shorthand.C
P = symbol_shorthand.P
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
def run(args):
""" Run LM optimization with BAL input data and report resulting error """
input_file = gtsam.findExampleDataFile(args.input_file)
# # Load the SfM data from file
scene_data = readBal(input_file)
logging.info(f"read {scene_data.number_tracks()} tracks on {scene_data.number_cameras()} cameras\n")
# # Create a factor graph
graph = gtsam.NonlinearFactorGraph()
# # We share *one* noiseModel between all projection factors
noise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
# Add measurements to the factor graph
j = 0
for t_idx in range(scene_data.number_tracks()):
track = scene_data.track(t_idx) # SfmTrack
# retrieve the SfmMeasurement objects
for m_idx in range(track.number_measurements()):
# i represents the camera index, and uv is the 2d measurement
i, uv = track.measurement(m_idx)
# note use of shorthand symbols C and P
graph.add(GeneralSFMFactorCal3Bundler(uv, noise, C(i), P(j)))
j += 1
# Add a prior on pose x1. This indirectly specifies where the origin is.
graph.push_back(
gtsam.PriorFactorPinholeCameraCal3Bundler(
C(0), scene_data.camera(0), gtsam.noiseModel.Isotropic.Sigma(9, 0.1)
)
)
# Also add a prior on the position of the first landmark to fix the scale
graph.push_back(
gtsam.PriorFactorPoint3(
P(0), scene_data.track(0).point3(), gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
)
)
# # Create initial estimate
initial = gtsam.Values()
i = 0
# add each PinholeCameraCal3Bundler
for cam_idx in range(scene_data.number_cameras()):
camera = scene_data.camera(cam_idx)
initial.insert(C(i), camera)
i += 1
j = 0
# add each SfmTrack
for t_idx in range(scene_data.number_tracks()):
track = scene_data.track(t_idx)
initial.insert(P(j), track.point3())
j += 1
# Optimize the graph and print results
try:
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("ERROR")
lm = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = lm.optimize()
except Exception as e:
logging.exception("LM Optimization failed")
return
# Error drops from 2764.22 to 0.046
logging.info(f"final error: {graph.error(result)}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-i',
'--input_file',
type=str,
default="dubrovnik-3-7-pre",
help='Read SFM data from the specified BAL file'
'The data format is described here: https://grail.cs.washington.edu/projects/bal/.'
'BAL files contain (nrPoses, nrPoints, nrObservations), followed by (i,j,u,v) tuples, '
'then (wx,wy,wz,tx,ty,tz,f,k1,k1) as Bundler camera calibrations w/ Rodrigues vector'
'and (x,y,z) 3d point initializations.'
)
run(parser.parse_args())