213 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file DSF.h
 | 
						|
 * @date Mar 26, 2010
 | 
						|
 * @author Kai Ni
 | 
						|
 * @brief An implementation of Disjoint set forests (see CLR page 446 and up)
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <gtsam_unstable/base/BTree.h>
 | 
						|
#include <iostream>
 | 
						|
#include <list>
 | 
						|
#include <set>
 | 
						|
#include <map>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/**
 | 
						|
 * Disjoint Set Forest class
 | 
						|
 *
 | 
						|
 * Quoting from CLR: A disjoint-set data structure maintains a collection
 | 
						|
 * S = {S_1,S_2,...} of disjoint dynamic sets. Each set is identified by
 | 
						|
 * a representative, which is some member of the set.
 | 
						|
 *
 | 
						|
 * @ingroup base
 | 
						|
 */
 | 
						|
template<class KEY>
 | 
						|
class DSF: protected BTree<KEY, KEY> {
 | 
						|
 | 
						|
public:
 | 
						|
  typedef DSF<KEY> Self;
 | 
						|
  typedef std::set<KEY> Set;
 | 
						|
  typedef BTree<KEY, KEY> Tree;
 | 
						|
  typedef std::pair<KEY, KEY> KeyLabel;
 | 
						|
 | 
						|
  // constructor
 | 
						|
  DSF() :
 | 
						|
      Tree() {
 | 
						|
  }
 | 
						|
 | 
						|
  // constructor
 | 
						|
  DSF(const Tree& tree) :
 | 
						|
      Tree(tree) {
 | 
						|
  }
 | 
						|
 | 
						|
  // constructor with a list of unconnected keys
 | 
						|
  DSF(const std::list<KEY>& keys) :
 | 
						|
      Tree() {
 | 
						|
    for(const KEY& key: keys)
 | 
						|
      *this = this->add(key, key);
 | 
						|
  }
 | 
						|
 | 
						|
  // constructor with a set of unconnected keys
 | 
						|
  DSF(const std::set<KEY>& keys) :
 | 
						|
      Tree() {
 | 
						|
    for(const KEY& key: keys)
 | 
						|
      *this = this->add(key, key);
 | 
						|
  }
 | 
						|
 | 
						|
  // create a new singleton, does nothing if already exists
 | 
						|
  Self makeSet(const KEY& key) const {
 | 
						|
    if (this->mem(key))
 | 
						|
      return *this;
 | 
						|
    else
 | 
						|
      return this->add(key, key);
 | 
						|
  }
 | 
						|
 | 
						|
  // create a new singleton, does nothing if already exists
 | 
						|
  void makeSetInPlace(const KEY& key) {
 | 
						|
    if (!this->mem(key))
 | 
						|
      *this = this->add(key, key);
 | 
						|
  }
 | 
						|
 | 
						|
  // find the label of the set in which {key} lives
 | 
						|
  KEY findSet(const KEY& key) const {
 | 
						|
    KEY parent = this->find(key);
 | 
						|
    return parent == key ? key : findSet(parent);
 | 
						|
  }
 | 
						|
 | 
						|
  // return a new DSF where x and y are in the same set. No path compression
 | 
						|
  Self makeUnion(const KEY& key1, const KEY& key2) const {
 | 
						|
    DSF<KEY> copy = *this;
 | 
						|
    copy.makeUnionInPlace(key1,key2);
 | 
						|
    return copy;
 | 
						|
  }
 | 
						|
 | 
						|
  // the in-place version of makeUnion
 | 
						|
  void makeUnionInPlace(const KEY& key1, const KEY& key2) {
 | 
						|
    *this = this->add(findSet_(key2), findSet_(key1));
 | 
						|
  }
 | 
						|
 | 
						|
  // create a new singleton with two connected keys
 | 
						|
  Self makePair(const KEY& key1, const KEY& key2) const {
 | 
						|
    return makeSet(key1).makeSet(key2).makeUnion(key1, key2);
 | 
						|
  }
 | 
						|
 | 
						|
  // create a new singleton with a list of fully connected keys
 | 
						|
  Self makeList(const std::list<KEY>& keys) const {
 | 
						|
    Self t = *this;
 | 
						|
    for(const KEY& key: keys)
 | 
						|
      t = t.makePair(key, keys.front());
 | 
						|
    return t;
 | 
						|
  }
 | 
						|
 | 
						|
  // return a dsf in which all find_set operations will be O(1) due to path compression.
 | 
						|
  DSF flatten() const {
 | 
						|
    DSF t = *this;
 | 
						|
    for(const KeyLabel& pair: (Tree)t)
 | 
						|
      t.findSet_(pair.first);
 | 
						|
    return t;
 | 
						|
  }
 | 
						|
 | 
						|
  // maps f over all keys, must be invertible
 | 
						|
  DSF map(std::function<KEY(const KEY&)> func) const {
 | 
						|
    DSF t;
 | 
						|
    for(const KeyLabel& pair: (Tree)*this)
 | 
						|
      t = t.add(func(pair.first), func(pair.second));
 | 
						|
    return t;
 | 
						|
  }
 | 
						|
 | 
						|
  // return the number of sets
 | 
						|
  size_t numSets() const {
 | 
						|
    size_t num = 0;
 | 
						|
    for(const KeyLabel& pair: (Tree)*this)
 | 
						|
      if (pair.first == pair.second)
 | 
						|
        num++;
 | 
						|
    return num;
 | 
						|
  }
 | 
						|
 | 
						|
  // return the numer of keys
 | 
						|
  size_t size() const {
 | 
						|
    return Tree::size();
 | 
						|
  }
 | 
						|
 | 
						|
  // return all sets, i.e. a partition of all elements
 | 
						|
  std::map<KEY, Set> sets() const {
 | 
						|
    std::map<KEY, Set> sets;
 | 
						|
    for(const KeyLabel& pair: (Tree)*this)
 | 
						|
      sets[findSet(pair.second)].insert(pair.first);
 | 
						|
    return sets;
 | 
						|
  }
 | 
						|
 | 
						|
  // return a partition of the given elements {keys}
 | 
						|
  std::map<KEY, Set> partition(const std::list<KEY>& keys) const {
 | 
						|
    std::map<KEY, Set> partitions;
 | 
						|
    for(const KEY& key: keys)
 | 
						|
      partitions[findSet(key)].insert(key);
 | 
						|
    return partitions;
 | 
						|
  }
 | 
						|
 | 
						|
  // get the nodes in the tree with the given label
 | 
						|
  Set set(const KEY& label) const {
 | 
						|
    Set set;
 | 
						|
    for(const KeyLabel& pair: (Tree)*this) {
 | 
						|
      if (pair.second == label || findSet(pair.second) == label)
 | 
						|
        set.insert(pair.first);
 | 
						|
    }
 | 
						|
    return set;
 | 
						|
  }
 | 
						|
 | 
						|
  /** equality */
 | 
						|
  bool operator==(const Self& t) const {
 | 
						|
    return (Tree) *this == (Tree) t;
 | 
						|
  }
 | 
						|
 | 
						|
  /** inequality */
 | 
						|
  bool operator!=(const Self& t) const {
 | 
						|
    return (Tree) *this != (Tree) t;
 | 
						|
  }
 | 
						|
 | 
						|
  // print the object
 | 
						|
  void print(const std::string& name = "DSF") const {
 | 
						|
    std::cout << name << std::endl;
 | 
						|
    for(const KeyLabel& pair: (Tree)*this)
 | 
						|
      std::cout << (std::string) pair.first << " " << (std::string) pair.second
 | 
						|
          << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
  /**
 | 
						|
   * same as findSet except with path compression: After we have traversed the path to
 | 
						|
   * the root, each parent pointer is made to directly point to it
 | 
						|
   */
 | 
						|
  KEY findSet_(const KEY& key) {
 | 
						|
    KEY parent = this->find(key);
 | 
						|
    if (parent == key)
 | 
						|
      return parent;
 | 
						|
    else {
 | 
						|
      KEY label = findSet_(parent);
 | 
						|
      *this = this->add(key, label);
 | 
						|
      return label;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
// shortcuts
 | 
						|
typedef DSF<int> DSFInt;
 | 
						|
 | 
						|
} // namespace gtsam
 |