gtsam/gtsam/slam/lago.cpp

376 lines
14 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file lago.h
* @author Luca Carlone
* @author Frank Dellaert
* @date May 14, 2014
*/
#include <gtsam/slam/lago.h>
#include <gtsam/slam/InitializePose.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/base/timing.h>
#include <boost/math/special_functions.hpp>
using namespace std;
namespace gtsam {
namespace lago {
static const Matrix I = I_1x1;
static const Matrix I3 = I_3x3;
static const noiseModel::Diagonal::shared_ptr priorOrientationNoise =
noiseModel::Diagonal::Sigmas((Vector(1) << 0).finished());
static const noiseModel::Diagonal::shared_ptr priorPose2Noise =
noiseModel::Diagonal::Variances(Vector3(1e-6, 1e-6, 1e-8));
/* ************************************************************************* */
/**
* Compute the cumulative orientation (without wrapping) wrt the root of a
* spanning tree (tree) for a node (nodeKey). The function starts at the nodes and
* moves towards the root summing up the (directed) rotation measurements.
* Relative measurements are encoded in "deltaThetaMap".
* The root is assumed to have orientation zero.
*/
static double computeThetaToRoot(const Key nodeKey,
const PredecessorMap<Key>& tree, const key2doubleMap& deltaThetaMap,
const key2doubleMap& thetaFromRootMap) {
double nodeTheta = 0;
Key key_child = nodeKey; // the node
Key key_parent = 0; // the initialization does not matter
while (1) {
// We check if we reached the root
if (tree.at(key_child) == key_child) // if we reached the root
break;
// we sum the delta theta corresponding to the edge parent->child
nodeTheta += deltaThetaMap.at(key_child);
// we get the parent
key_parent = tree.at(key_child); // the parent
// we check if we connected to some part of the tree we know
if (thetaFromRootMap.find(key_parent) != thetaFromRootMap.end()) {
nodeTheta += thetaFromRootMap.at(key_parent);
break;
}
key_child = key_parent; // we move upwards in the tree
}
return nodeTheta;
}
/* ************************************************************************* */
key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
const PredecessorMap<Key>& tree) {
key2doubleMap thetaToRootMap;
// Orientation of the roo
thetaToRootMap.insert(pair<Key, double>(initialize::kAnchorKey, 0.0));
// for all nodes in the tree
for(const key2doubleMap::value_type& it: deltaThetaMap) {
// compute the orientation wrt root
Key nodeKey = it.first;
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
thetaToRootMap);
thetaToRootMap.insert(pair<Key, double>(nodeKey, nodeTheta));
}
return thetaToRootMap;
}
/* ************************************************************************* */
void getSymbolicGraph(
/*OUTPUTS*/vector<size_t>& spanningTreeIds, vector<size_t>& chordsIds,
key2doubleMap& deltaThetaMap,
/*INPUTS*/const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g) {
// Get keys for which you want the orientation
size_t id = 0;
// Loop over the factors
for(const boost::shared_ptr<NonlinearFactor>& factor: g) {
if (factor->keys().size() == 2) {
Key key1 = factor->keys()[0];
Key key2 = factor->keys()[1];
// recast to a between
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if (!pose2Between)
continue;
// get the orientation - measured().theta();
double deltaTheta = pose2Between->measured().theta();
// insert (directed) orientations in the map "deltaThetaMap"
bool inTree = false;
if (tree.at(key1) == key2) { // key2 -> key1
deltaThetaMap.insert(pair<Key, double>(key1, -deltaTheta));
inTree = true;
} else if (tree.at(key2) == key1) { // key1 -> key2
deltaThetaMap.insert(pair<Key, double>(key2, deltaTheta));
inTree = true;
}
// store factor slot, distinguishing spanning tree edges from chordsIds
if (inTree == true)
spanningTreeIds.push_back(id);
else
// it's a chord!
chordsIds.push_back(id);
}
id++;
}
}
/* ************************************************************************* */
// Retrieve the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2>
static void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
// Get the relative rotation measurement from the between factor
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if (!pose2Between)
throw invalid_argument(
"buildLinearOrientationGraph: invalid between factor!");
deltaTheta = (Vector(1) << pose2Between->measured().theta()).finished();
// Retrieve the noise model for the relative rotation
SharedNoiseModel model = pose2Between->noiseModel();
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
if (!diagonalModel)
throw invalid_argument("buildLinearOrientationGraph: invalid noise model "
"(current version assumes diagonal noise model)!");
Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2)).finished(); // std on the angular measurement
model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
}
/* ************************************************************************* */
GaussianFactorGraph buildLinearOrientationGraph(
const vector<size_t>& spanningTreeIds, const vector<size_t>& chordsIds,
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot,
const PredecessorMap<Key>& tree) {
GaussianFactorGraph lagoGraph;
Vector deltaTheta;
noiseModel::Diagonal::shared_ptr model_deltaTheta;
// put original measurements in the spanning tree
for(const size_t& factorId: spanningTreeIds) {
const KeyVector& keys = g[factorId]->keys();
Key key1 = keys[0], key2 = keys[1];
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
lagoGraph.add(key1, -I, key2, I, deltaTheta, model_deltaTheta);
}
// put regularized measurements in the chordsIds
for(const size_t& factorId: chordsIds) {
const KeyVector& keys = g[factorId]->keys();
Key key1 = keys[0], key2 = keys[1];
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
double key1_DeltaTheta_key2 = deltaTheta(0);
///cout << "REG: key1= " << DefaultKeyFormatter(key1) << " key2= " << DefaultKeyFormatter(key2) << endl;
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1)
- orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
double k = boost::math::round(k2pi_noise / (2 * M_PI));
//if (k2pi_noise - 2*k*M_PI > 1e-5) cout << k2pi_noise - 2*k*M_PI << endl; // for debug
Vector deltaThetaRegularized = (Vector(1)
<< key1_DeltaTheta_key2 - 2 * k * M_PI).finished();
lagoGraph.add(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta);
}
// prior on the anchor orientation
lagoGraph.add(initialize::kAnchorKey, I, (Vector(1) << 0.0).finished(), priorOrientationNoise);
return lagoGraph;
}
/* ************************************************************************* */
static PredecessorMap<Key> findOdometricPath(
const NonlinearFactorGraph& pose2Graph) {
PredecessorMap<Key> tree;
Key minKey = initialize::kAnchorKey; // this initialization does not matter
bool minUnassigned = true;
for(const boost::shared_ptr<NonlinearFactor>& factor: pose2Graph) {
Key key1 = std::min(factor->keys()[0], factor->keys()[1]);
Key key2 = std::max(factor->keys()[0], factor->keys()[1]);
if (minUnassigned) {
minKey = key1;
minUnassigned = false;
}
if (key2 - key1 == 1) { // consecutive keys
tree.insert(key2, key1);
if (key1 < minKey)
minKey = key1;
}
}
tree.insert(minKey, initialize::kAnchorKey);
tree.insert(initialize::kAnchorKey, initialize::kAnchorKey); // root
return tree;
}
/* ************************************************************************* */
// Return the orientations of a graph including only BetweenFactors<Pose2>
static VectorValues computeOrientations(const NonlinearFactorGraph& pose2Graph,
bool useOdometricPath) {
gttic(lago_computeOrientations);
// Find a minimum spanning tree
PredecessorMap<Key> tree;
if (useOdometricPath)
tree = findOdometricPath(pose2Graph);
else
tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(pose2Graph);
// Create a linear factor graph (LFG) of scalars
key2doubleMap deltaThetaMap;
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
// temporary structure to correct wraparounds along loops
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
// regularize measurements and plug everything in a factor graph
GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds,
chordsIds, pose2Graph, orientationsToRoot, tree);
// Solve the LFG
VectorValues orientationsLago = lagoGraph.optimize();
return orientationsLago;
}
/* ************************************************************************* */
VectorValues initializeOrientations(const NonlinearFactorGraph& graph,
bool useOdometricPath) {
// We "extract" the Pose2 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose2Graph = initialize::buildPoseGraph<Pose2>(graph);
// Get orientations from relative orientation measurements
return computeOrientations(pose2Graph, useOdometricPath);
}
/* ************************************************************************* */
Values computePoses(const NonlinearFactorGraph& pose2graph,
VectorValues& orientationsLago) {
gttic(lago_computePoses);
// Linearized graph on full poses
GaussianFactorGraph linearPose2graph;
// We include the linear version of each between factor
for(const boost::shared_ptr<NonlinearFactor>& factor: pose2graph) {
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if (pose2Between) {
Key key1 = pose2Between->keys()[0];
double theta1 = orientationsLago.at(key1)(0);
double s1 = sin(theta1);
double c1 = cos(theta1);
Key key2 = pose2Between->keys()[1];
double theta2 = orientationsLago.at(key2)(0);
double linearDeltaRot = theta2 - theta1
- pose2Between->measured().theta();
linearDeltaRot = Rot2(linearDeltaRot).theta(); // to normalize
double dx = pose2Between->measured().x();
double dy = pose2Between->measured().y();
Vector globalDeltaCart = //
(Vector(2) << c1 * dx - s1 * dy, s1 * dx + c1 * dy).finished();
Vector b = (Vector(3) << globalDeltaCart, linearDeltaRot).finished(); // rhs
Matrix J1 = -I3;
J1(0, 2) = s1 * dx + c1 * dy;
J1(1, 2) = -c1 * dx + s1 * dy;
// Retrieve the noise model for the relative rotation
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
boost::dynamic_pointer_cast<noiseModel::Diagonal>(
pose2Between->noiseModel());
linearPose2graph.add(key1, J1, key2, I3, b, diagonalModel);
} else {
throw invalid_argument(
"computeLagoPoses: cannot manage non between factor here!");
}
}
// add prior
linearPose2graph.add(initialize::kAnchorKey, I3, Vector3(0.0, 0.0, 0.0),
priorPose2Noise);
// optimize
VectorValues posesLago = linearPose2graph.optimize();
// put into Values structure
Values initialGuessLago;
for(const VectorValues::value_type& it: posesLago) {
Key key = it.first;
if (key != initialize::kAnchorKey) {
const Vector& poseVector = it.second;
Pose2 poseLago = Pose2(poseVector(0), poseVector(1),
orientationsLago.at(key)(0) + poseVector(2));
initialGuessLago.insert(key, poseLago);
}
}
return initialGuessLago;
}
/* ************************************************************************* */
Values initialize(const NonlinearFactorGraph& graph, bool useOdometricPath) {
gttic(lago_initialize);
// We "extract" the Pose2 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose2Graph = initialize::buildPoseGraph<Pose2>(graph);
// Get orientations from relative orientation measurements
VectorValues orientationsLago = computeOrientations(pose2Graph,
useOdometricPath);
// Compute the full poses
return computePoses(pose2Graph, orientationsLago);
}
/* ************************************************************************* */
Values initialize(const NonlinearFactorGraph& graph,
const Values& initialGuess) {
Values initialGuessLago;
// get the orientation estimates from LAGO
VectorValues orientations = initializeOrientations(graph);
// for all nodes in the tree
for(const VectorValues::value_type& it: orientations) {
Key key = it.first;
if (key != initialize::kAnchorKey) {
const Pose2& pose = initialGuess.at<Pose2>(key);
const Vector& orientation = it.second;
Pose2 poseLago = Pose2(pose.x(), pose.y(), orientation(0));
initialGuessLago.insert(key, poseLago);
}
}
return initialGuessLago;
}
} // end of namespace lago
} // end of namespace gtsam