376 lines
14 KiB
C++
376 lines
14 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file lago.h
|
|
* @author Luca Carlone
|
|
* @author Frank Dellaert
|
|
* @date May 14, 2014
|
|
*/
|
|
|
|
#include <gtsam/slam/lago.h>
|
|
|
|
#include <gtsam/slam/InitializePose.h>
|
|
#include <gtsam/nonlinear/PriorFactor.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/base/timing.h>
|
|
|
|
#include <boost/math/special_functions.hpp>
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
namespace lago {
|
|
|
|
static const Matrix I = I_1x1;
|
|
static const Matrix I3 = I_3x3;
|
|
|
|
static const noiseModel::Diagonal::shared_ptr priorOrientationNoise =
|
|
noiseModel::Diagonal::Sigmas((Vector(1) << 0).finished());
|
|
static const noiseModel::Diagonal::shared_ptr priorPose2Noise =
|
|
noiseModel::Diagonal::Variances(Vector3(1e-6, 1e-6, 1e-8));
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* Compute the cumulative orientation (without wrapping) wrt the root of a
|
|
* spanning tree (tree) for a node (nodeKey). The function starts at the nodes and
|
|
* moves towards the root summing up the (directed) rotation measurements.
|
|
* Relative measurements are encoded in "deltaThetaMap".
|
|
* The root is assumed to have orientation zero.
|
|
*/
|
|
static double computeThetaToRoot(const Key nodeKey,
|
|
const PredecessorMap<Key>& tree, const key2doubleMap& deltaThetaMap,
|
|
const key2doubleMap& thetaFromRootMap) {
|
|
|
|
double nodeTheta = 0;
|
|
Key key_child = nodeKey; // the node
|
|
Key key_parent = 0; // the initialization does not matter
|
|
while (1) {
|
|
// We check if we reached the root
|
|
if (tree.at(key_child) == key_child) // if we reached the root
|
|
break;
|
|
// we sum the delta theta corresponding to the edge parent->child
|
|
nodeTheta += deltaThetaMap.at(key_child);
|
|
// we get the parent
|
|
key_parent = tree.at(key_child); // the parent
|
|
// we check if we connected to some part of the tree we know
|
|
if (thetaFromRootMap.find(key_parent) != thetaFromRootMap.end()) {
|
|
nodeTheta += thetaFromRootMap.at(key_parent);
|
|
break;
|
|
}
|
|
key_child = key_parent; // we move upwards in the tree
|
|
}
|
|
return nodeTheta;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
|
|
const PredecessorMap<Key>& tree) {
|
|
|
|
key2doubleMap thetaToRootMap;
|
|
|
|
// Orientation of the roo
|
|
thetaToRootMap.insert(pair<Key, double>(initialize::kAnchorKey, 0.0));
|
|
|
|
// for all nodes in the tree
|
|
for(const key2doubleMap::value_type& it: deltaThetaMap) {
|
|
// compute the orientation wrt root
|
|
Key nodeKey = it.first;
|
|
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
|
|
thetaToRootMap);
|
|
thetaToRootMap.insert(pair<Key, double>(nodeKey, nodeTheta));
|
|
}
|
|
return thetaToRootMap;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void getSymbolicGraph(
|
|
/*OUTPUTS*/vector<size_t>& spanningTreeIds, vector<size_t>& chordsIds,
|
|
key2doubleMap& deltaThetaMap,
|
|
/*INPUTS*/const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g) {
|
|
|
|
// Get keys for which you want the orientation
|
|
size_t id = 0;
|
|
// Loop over the factors
|
|
for(const boost::shared_ptr<NonlinearFactor>& factor: g) {
|
|
if (factor->keys().size() == 2) {
|
|
Key key1 = factor->keys()[0];
|
|
Key key2 = factor->keys()[1];
|
|
// recast to a between
|
|
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
|
|
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
|
|
if (!pose2Between)
|
|
continue;
|
|
// get the orientation - measured().theta();
|
|
double deltaTheta = pose2Between->measured().theta();
|
|
// insert (directed) orientations in the map "deltaThetaMap"
|
|
bool inTree = false;
|
|
if (tree.at(key1) == key2) { // key2 -> key1
|
|
deltaThetaMap.insert(pair<Key, double>(key1, -deltaTheta));
|
|
inTree = true;
|
|
} else if (tree.at(key2) == key1) { // key1 -> key2
|
|
deltaThetaMap.insert(pair<Key, double>(key2, deltaTheta));
|
|
inTree = true;
|
|
}
|
|
// store factor slot, distinguishing spanning tree edges from chordsIds
|
|
if (inTree == true)
|
|
spanningTreeIds.push_back(id);
|
|
else
|
|
// it's a chord!
|
|
chordsIds.push_back(id);
|
|
}
|
|
id++;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Retrieve the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2>
|
|
static void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
|
|
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
|
|
|
|
// Get the relative rotation measurement from the between factor
|
|
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
|
|
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
|
|
if (!pose2Between)
|
|
throw invalid_argument(
|
|
"buildLinearOrientationGraph: invalid between factor!");
|
|
deltaTheta = (Vector(1) << pose2Between->measured().theta()).finished();
|
|
|
|
// Retrieve the noise model for the relative rotation
|
|
SharedNoiseModel model = pose2Between->noiseModel();
|
|
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
|
|
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
|
|
if (!diagonalModel)
|
|
throw invalid_argument("buildLinearOrientationGraph: invalid noise model "
|
|
"(current version assumes diagonal noise model)!");
|
|
Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2)).finished(); // std on the angular measurement
|
|
model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
GaussianFactorGraph buildLinearOrientationGraph(
|
|
const vector<size_t>& spanningTreeIds, const vector<size_t>& chordsIds,
|
|
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot,
|
|
const PredecessorMap<Key>& tree) {
|
|
|
|
GaussianFactorGraph lagoGraph;
|
|
Vector deltaTheta;
|
|
noiseModel::Diagonal::shared_ptr model_deltaTheta;
|
|
|
|
// put original measurements in the spanning tree
|
|
for(const size_t& factorId: spanningTreeIds) {
|
|
const KeyVector& keys = g[factorId]->keys();
|
|
Key key1 = keys[0], key2 = keys[1];
|
|
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
|
lagoGraph.add(key1, -I, key2, I, deltaTheta, model_deltaTheta);
|
|
}
|
|
// put regularized measurements in the chordsIds
|
|
for(const size_t& factorId: chordsIds) {
|
|
const KeyVector& keys = g[factorId]->keys();
|
|
Key key1 = keys[0], key2 = keys[1];
|
|
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
|
double key1_DeltaTheta_key2 = deltaTheta(0);
|
|
///cout << "REG: key1= " << DefaultKeyFormatter(key1) << " key2= " << DefaultKeyFormatter(key2) << endl;
|
|
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1)
|
|
- orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
|
|
double k = boost::math::round(k2pi_noise / (2 * M_PI));
|
|
//if (k2pi_noise - 2*k*M_PI > 1e-5) cout << k2pi_noise - 2*k*M_PI << endl; // for debug
|
|
Vector deltaThetaRegularized = (Vector(1)
|
|
<< key1_DeltaTheta_key2 - 2 * k * M_PI).finished();
|
|
lagoGraph.add(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta);
|
|
}
|
|
// prior on the anchor orientation
|
|
lagoGraph.add(initialize::kAnchorKey, I, (Vector(1) << 0.0).finished(), priorOrientationNoise);
|
|
return lagoGraph;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
static PredecessorMap<Key> findOdometricPath(
|
|
const NonlinearFactorGraph& pose2Graph) {
|
|
|
|
PredecessorMap<Key> tree;
|
|
Key minKey = initialize::kAnchorKey; // this initialization does not matter
|
|
bool minUnassigned = true;
|
|
|
|
for(const boost::shared_ptr<NonlinearFactor>& factor: pose2Graph) {
|
|
|
|
Key key1 = std::min(factor->keys()[0], factor->keys()[1]);
|
|
Key key2 = std::max(factor->keys()[0], factor->keys()[1]);
|
|
if (minUnassigned) {
|
|
minKey = key1;
|
|
minUnassigned = false;
|
|
}
|
|
if (key2 - key1 == 1) { // consecutive keys
|
|
tree.insert(key2, key1);
|
|
if (key1 < minKey)
|
|
minKey = key1;
|
|
}
|
|
}
|
|
tree.insert(minKey, initialize::kAnchorKey);
|
|
tree.insert(initialize::kAnchorKey, initialize::kAnchorKey); // root
|
|
return tree;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Return the orientations of a graph including only BetweenFactors<Pose2>
|
|
static VectorValues computeOrientations(const NonlinearFactorGraph& pose2Graph,
|
|
bool useOdometricPath) {
|
|
gttic(lago_computeOrientations);
|
|
|
|
// Find a minimum spanning tree
|
|
PredecessorMap<Key> tree;
|
|
if (useOdometricPath)
|
|
tree = findOdometricPath(pose2Graph);
|
|
else
|
|
tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
|
BetweenFactor<Pose2> >(pose2Graph);
|
|
|
|
// Create a linear factor graph (LFG) of scalars
|
|
key2doubleMap deltaThetaMap;
|
|
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
|
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
|
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
|
|
|
|
// temporary structure to correct wraparounds along loops
|
|
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
|
|
|
|
// regularize measurements and plug everything in a factor graph
|
|
GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds,
|
|
chordsIds, pose2Graph, orientationsToRoot, tree);
|
|
|
|
// Solve the LFG
|
|
VectorValues orientationsLago = lagoGraph.optimize();
|
|
|
|
return orientationsLago;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
VectorValues initializeOrientations(const NonlinearFactorGraph& graph,
|
|
bool useOdometricPath) {
|
|
|
|
// We "extract" the Pose2 subgraph of the original graph: this
|
|
// is done to properly model priors and avoiding operating on a larger graph
|
|
NonlinearFactorGraph pose2Graph = initialize::buildPoseGraph<Pose2>(graph);
|
|
|
|
// Get orientations from relative orientation measurements
|
|
return computeOrientations(pose2Graph, useOdometricPath);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Values computePoses(const NonlinearFactorGraph& pose2graph,
|
|
VectorValues& orientationsLago) {
|
|
gttic(lago_computePoses);
|
|
|
|
// Linearized graph on full poses
|
|
GaussianFactorGraph linearPose2graph;
|
|
|
|
// We include the linear version of each between factor
|
|
for(const boost::shared_ptr<NonlinearFactor>& factor: pose2graph) {
|
|
|
|
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
|
|
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
|
|
|
|
if (pose2Between) {
|
|
Key key1 = pose2Between->keys()[0];
|
|
double theta1 = orientationsLago.at(key1)(0);
|
|
double s1 = sin(theta1);
|
|
double c1 = cos(theta1);
|
|
|
|
Key key2 = pose2Between->keys()[1];
|
|
double theta2 = orientationsLago.at(key2)(0);
|
|
|
|
double linearDeltaRot = theta2 - theta1
|
|
- pose2Between->measured().theta();
|
|
linearDeltaRot = Rot2(linearDeltaRot).theta(); // to normalize
|
|
|
|
double dx = pose2Between->measured().x();
|
|
double dy = pose2Between->measured().y();
|
|
|
|
Vector globalDeltaCart = //
|
|
(Vector(2) << c1 * dx - s1 * dy, s1 * dx + c1 * dy).finished();
|
|
Vector b = (Vector(3) << globalDeltaCart, linearDeltaRot).finished(); // rhs
|
|
Matrix J1 = -I3;
|
|
J1(0, 2) = s1 * dx + c1 * dy;
|
|
J1(1, 2) = -c1 * dx + s1 * dy;
|
|
// Retrieve the noise model for the relative rotation
|
|
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
|
|
boost::dynamic_pointer_cast<noiseModel::Diagonal>(
|
|
pose2Between->noiseModel());
|
|
|
|
linearPose2graph.add(key1, J1, key2, I3, b, diagonalModel);
|
|
} else {
|
|
throw invalid_argument(
|
|
"computeLagoPoses: cannot manage non between factor here!");
|
|
}
|
|
}
|
|
// add prior
|
|
linearPose2graph.add(initialize::kAnchorKey, I3, Vector3(0.0, 0.0, 0.0),
|
|
priorPose2Noise);
|
|
|
|
// optimize
|
|
VectorValues posesLago = linearPose2graph.optimize();
|
|
|
|
// put into Values structure
|
|
Values initialGuessLago;
|
|
for(const VectorValues::value_type& it: posesLago) {
|
|
Key key = it.first;
|
|
if (key != initialize::kAnchorKey) {
|
|
const Vector& poseVector = it.second;
|
|
Pose2 poseLago = Pose2(poseVector(0), poseVector(1),
|
|
orientationsLago.at(key)(0) + poseVector(2));
|
|
initialGuessLago.insert(key, poseLago);
|
|
}
|
|
}
|
|
return initialGuessLago;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Values initialize(const NonlinearFactorGraph& graph, bool useOdometricPath) {
|
|
gttic(lago_initialize);
|
|
|
|
// We "extract" the Pose2 subgraph of the original graph: this
|
|
// is done to properly model priors and avoiding operating on a larger graph
|
|
NonlinearFactorGraph pose2Graph = initialize::buildPoseGraph<Pose2>(graph);
|
|
|
|
// Get orientations from relative orientation measurements
|
|
VectorValues orientationsLago = computeOrientations(pose2Graph,
|
|
useOdometricPath);
|
|
|
|
// Compute the full poses
|
|
return computePoses(pose2Graph, orientationsLago);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Values initialize(const NonlinearFactorGraph& graph,
|
|
const Values& initialGuess) {
|
|
Values initialGuessLago;
|
|
|
|
// get the orientation estimates from LAGO
|
|
VectorValues orientations = initializeOrientations(graph);
|
|
|
|
// for all nodes in the tree
|
|
for(const VectorValues::value_type& it: orientations) {
|
|
Key key = it.first;
|
|
if (key != initialize::kAnchorKey) {
|
|
const Pose2& pose = initialGuess.at<Pose2>(key);
|
|
const Vector& orientation = it.second;
|
|
Pose2 poseLago = Pose2(pose.x(), pose.y(), orientation(0));
|
|
initialGuessLago.insert(key, poseLago);
|
|
}
|
|
}
|
|
return initialGuessLago;
|
|
}
|
|
|
|
} // end of namespace lago
|
|
} // end of namespace gtsam
|