153 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    DoglegOptimizer.h
 | |
|  * @brief   Unit tests for DoglegOptimizer
 | |
|  * @author  Richard Roberts
 | |
|  */
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <tests/smallExample.h>
 | |
| #include <gtsam/nonlinear/DoglegOptimizerImpl.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/linear/JacobianFactor.h>
 | |
| #include <gtsam/linear/GaussianBayesTree.h>
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| 
 | |
| #ifdef __GNUC__
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wunused-variable"
 | |
| #endif
 | |
| #include <boost/bind.hpp>
 | |
| #ifdef __GNUC__
 | |
| #pragma GCC diagnostic pop
 | |
| #endif
 | |
| #include <boost/assign/list_of.hpp> // for 'list_of()'
 | |
| #include <functional>
 | |
| #include <boost/iterator/counting_iterator.hpp>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(DoglegOptimizer, ComputeBlend) {
 | |
|   // Create an arbitrary Bayes Net
 | |
|   GaussianBayesNet gbn;
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
 | |
|       3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
 | |
|       4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished()));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
 | |
|       2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
 | |
|       4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished()));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
 | |
|       3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished()));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
 | |
|       4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished()));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished()));
 | |
| 
 | |
|   // Compute steepest descent point
 | |
|   VectorValues xu = gbn.optimizeGradientSearch();
 | |
| 
 | |
|   // Compute Newton's method point
 | |
|   VectorValues xn = gbn.optimize();
 | |
| 
 | |
|   // The Newton's method point should be more "adventurous", i.e. larger, than the steepest descent point
 | |
|   EXPECT(xu.vector().norm() < xn.vector().norm());
 | |
| 
 | |
|   // Compute blend
 | |
|   double Delta = 1.5;
 | |
|   VectorValues xb = DoglegOptimizerImpl::ComputeBlend(Delta, xu, xn);
 | |
|   DOUBLES_EQUAL(Delta, xb.vector().norm(), 1e-10);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(DoglegOptimizer, ComputeDoglegPoint) {
 | |
|   // Create an arbitrary Bayes Net
 | |
|   GaussianBayesNet gbn;
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
 | |
|       3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
 | |
|       4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished()));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
 | |
|       2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
 | |
|       4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished()));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
 | |
|       3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished()));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
 | |
|       4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished()));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished()));
 | |
| 
 | |
|   // Compute dogleg point for different deltas
 | |
| 
 | |
|   double Delta1 = 0.5;  // Less than steepest descent
 | |
|   VectorValues actual1 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta1, gbn.optimizeGradientSearch(), gbn.optimize());
 | |
|   DOUBLES_EQUAL(Delta1, actual1.vector().norm(), 1e-5);
 | |
| 
 | |
|   double Delta2 = 1.5;  // Between steepest descent and Newton's method
 | |
|   VectorValues expected2 = DoglegOptimizerImpl::ComputeBlend(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
 | |
|   VectorValues actual2 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
 | |
|   DOUBLES_EQUAL(Delta2, actual2.vector().norm(), 1e-5);
 | |
|   EXPECT(assert_equal(expected2, actual2));
 | |
| 
 | |
|   double Delta3 = 5.0;  // Larger than Newton's method point
 | |
|   VectorValues expected3 = gbn.optimize();
 | |
|   VectorValues actual3 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta3, gbn.optimizeGradientSearch(), gbn.optimize());
 | |
|   EXPECT(assert_equal(expected3, actual3));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(DoglegOptimizer, Iterate) {
 | |
|   // really non-linear factor graph
 | |
|   NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
 | |
| 
 | |
|   // config far from minimum
 | |
|   Point2 x0(3,0);
 | |
|   Values config;
 | |
|   config.insert(X(1), x0);
 | |
| 
 | |
|   double Delta = 1.0;
 | |
|   for(size_t it=0; it<10; ++it) {
 | |
|     GaussianBayesNet gbn = *fg.linearize(config)->eliminateSequential();
 | |
|     // Iterate assumes that linear error = nonlinear error at the linearization point, and this should be true
 | |
|     double nonlinearError = fg.error(config);
 | |
|     double linearError = GaussianFactorGraph(gbn).error(config.zeroVectors());
 | |
|     DOUBLES_EQUAL(nonlinearError, linearError, 1e-5);
 | |
| //    cout << "it " << it << ", Delta = " << Delta << ", error = " << fg->error(*config) << endl;
 | |
|     VectorValues dx_u = gbn.optimizeGradientSearch();
 | |
|     VectorValues dx_n = gbn.optimize();
 | |
|     DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(Delta, DoglegOptimizerImpl::SEARCH_EACH_ITERATION, dx_u, dx_n, gbn, fg, config, fg.error(config));
 | |
|     Delta = result.Delta;
 | |
|     EXPECT(result.f_error < fg.error(config)); // Check that error decreases
 | |
|     Values newConfig(config.retract(result.dx_d));
 | |
|     config = newConfig;
 | |
|     DOUBLES_EQUAL(fg.error(config), result.f_error, 1e-5); // Check that error is correctly filled in
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |