gtsam/gtsam/inference/graph-inl.h

278 lines
8.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* graph-inl.h
* @brief Graph algorithm using boost library
* @author: Kai Ni
*/
#pragma once
#include <stdexcept>
#include <boost/foreach.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/prim_minimum_spanning_tree.hpp>
#include <gtsam/inference/graph.h>
using namespace std;
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
namespace gtsam {
/* ************************************************************************* */
template <class KEY>
class ordering_key_visitor : public boost::default_bfs_visitor {
public:
ordering_key_visitor(std::list<KEY>& ordering_in) : ordering_(ordering_in) {}
template <typename Vertex, typename Graph> void discover_vertex(Vertex v, const Graph& g) const {
KEY key = boost::get(boost::vertex_name, g, v);
ordering_.push_front(key);
}
std::list<KEY>& ordering_;
};
/* ************************************************************************* */
template<class KEY>
list<KEY> predecessorMap2Keys(const PredecessorMap<KEY>& p_map) {
typedef typename SGraph<KEY>::Vertex SVertex;
SGraph<KEY> g;
SVertex root;
std::map<KEY, SVertex> key2vertex;
boost::tie(g, root, key2vertex) = gtsam::predecessorMap2Graph<SGraph<KEY>, SVertex, KEY>(p_map);
// breadth first visit on the graph
std::list<KEY> keys;
ordering_key_visitor<KEY> vis(keys);
boost::breadth_first_search(g, root, boost::visitor(vis));
return keys;
}
/* ************************************************************************* */
template<class G, class F, class KEY>
SDGraph<KEY> toBoostGraph(const G& graph) {
// convert the factor graph to boost graph
SDGraph<KEY> g;
typedef typename boost::graph_traits<SDGraph<KEY> >::vertex_descriptor BoostVertex;
map<KEY, BoostVertex> key2vertex;
BoostVertex v1, v2;
typename G::const_iterator itFactor;
for(itFactor=graph.begin(); itFactor!=graph.end(); itFactor++) {
if ((*itFactor)->keys().size() > 2)
throw(invalid_argument("toBoostGraph: only support factors with at most two keys"));
if ((*itFactor)->keys().size() == 1)
continue;
boost::shared_ptr<F> factor = boost::dynamic_pointer_cast<F>(*itFactor);
if (!factor) continue;
KEY key1 = factor->key1();
KEY key2 = factor->key2();
if (key2vertex.find(key1) == key2vertex.end()) {
v1 = add_vertex(key1, g);
key2vertex.insert(make_pair(key1, v1));
} else
v1 = key2vertex[key1];
if (key2vertex.find(key2) == key2vertex.end()) {
v2 = add_vertex(key2, g);
key2vertex.insert(make_pair(key2, v2));
} else
v2 = key2vertex[key2];
boost::property<boost::edge_weight_t, double> edge_property(1.0); // assume constant edge weight here
boost::add_edge(v1, v2, edge_property, g);
}
return g;
}
/* ************************************************************************* */
template<class G, class V, class KEY>
boost::tuple<G, V, map<KEY,V> >
predecessorMap2Graph(const PredecessorMap<KEY>& p_map) {
G g;
map<KEY, V> key2vertex;
V v1, v2, root;
KEY child, parent;
bool foundRoot = false;
FOREACH_PAIR(child, parent, p_map) {
if (key2vertex.find(child) == key2vertex.end()) {
v1 = add_vertex(child, g);
key2vertex.insert(make_pair(child, v1));
} else
v1 = key2vertex[child];
if (key2vertex.find(parent) == key2vertex.end()) {
v2 = add_vertex(parent, g);
key2vertex.insert(make_pair(parent, v2));
} else
v2 = key2vertex[parent];
if (child==parent) {
root = v1;
foundRoot = true;
} else
boost::add_edge(v2, v1, g); // edge is from parent to child
}
if (!foundRoot)
throw invalid_argument("predecessorMap2Graph: invalid predecessor map!");
else
return boost::tuple<G, V, std::map<KEY, V> >(g, root, key2vertex);
}
/* ************************************************************************* */
template <class V, class POSE, class KEY>
class compose_key_visitor : public boost::default_bfs_visitor {
private:
boost::shared_ptr<Values> config_;
public:
compose_key_visitor(boost::shared_ptr<Values> config_in) {config_ = config_in;}
template <typename Edge, typename Graph> void tree_edge(Edge edge, const Graph& g) const {
KEY key_from = boost::get(boost::vertex_name, g, boost::source(edge, g));
KEY key_to = boost::get(boost::vertex_name, g, boost::target(edge, g));
POSE relativePose = boost::get(boost::edge_weight, g, edge);
config_->insert(key_to, config_->at<POSE>(key_from).compose(relativePose));
}
};
/* ************************************************************************* */
template<class G, class Factor, class POSE, class KEY>
boost::shared_ptr<Values> composePoses(const G& graph, const PredecessorMap<KEY>& tree,
const POSE& rootPose) {
//TODO: change edge_weight_t to edge_pose_t
typedef typename boost::adjacency_list<
boost::vecS, boost::vecS, boost::directedS,
boost::property<boost::vertex_name_t, KEY>,
boost::property<boost::edge_weight_t, POSE> > PoseGraph;
typedef typename boost::graph_traits<PoseGraph>::vertex_descriptor PoseVertex;
typedef typename boost::graph_traits<PoseGraph>::edge_descriptor PoseEdge;
PoseGraph g;
PoseVertex root;
map<KEY, PoseVertex> key2vertex;
boost::tie(g, root, key2vertex) =
predecessorMap2Graph<PoseGraph, PoseVertex, KEY>(tree);
// attach the relative poses to the edges
PoseEdge edge12, edge21;
bool found1, found2;
BOOST_FOREACH(typename G::sharedFactor nl_factor, graph) {
if (nl_factor->keys().size() > 2)
throw invalid_argument("composePoses: only support factors with at most two keys");
// e.g. in pose2graph, nonlinear factor needs to be converted to pose2factor
boost::shared_ptr<Factor> factor = boost::dynamic_pointer_cast<Factor>(nl_factor);
if (!factor) continue;
KEY key1 = factor->key1();
KEY key2 = factor->key2();
PoseVertex v1 = key2vertex.find(key1)->second;
PoseVertex v2 = key2vertex.find(key2)->second;
POSE l1Xl2 = factor->measured();
tie(edge12, found1) = boost::edge(v1, v2, g);
tie(edge21, found2) = boost::edge(v2, v1, g);
if (found1 && found2) throw invalid_argument ("composePoses: invalid spanning tree");
if (!found1 && !found2) continue;
if (found1)
boost::put(boost::edge_weight, g, edge12, l1Xl2);
else if (found2)
boost::put(boost::edge_weight, g, edge21, l1Xl2.inverse());
}
// compose poses
boost::shared_ptr<Values> config(new Values);
KEY rootKey = boost::get(boost::vertex_name, g, root);
config->insert(rootKey, rootPose);
compose_key_visitor<PoseVertex, POSE, KEY> vis(config);
boost::breadth_first_search(g, root, boost::visitor(vis));
return config;
}
/* ************************************************************************* */
/* ************************************************************************* */
template<class G, class KEY, class FACTOR2>
PredecessorMap<KEY> findMinimumSpanningTree(const G& fg) {
SDGraph<KEY> g = gtsam::toBoostGraph<G, FACTOR2, KEY>(fg);
// find minimum spanning tree
vector<typename SDGraph<KEY>::Vertex> p_map(boost::num_vertices(g));
prim_minimum_spanning_tree(g, &p_map[0]);
// convert edge to string pairs
PredecessorMap<KEY> tree;
typename SDGraph<KEY>::vertex_iterator itVertex = boost::vertices(g).first;
typename vector<typename SDGraph<KEY>::Vertex>::iterator vi;
for (vi = p_map.begin(); vi != p_map.end(); itVertex++, vi++) {
KEY key = boost::get(boost::vertex_name, g, *itVertex);
KEY parent = boost::get(boost::vertex_name, g, *vi);
tree.insert(key, parent);
}
return tree;
}
/* ************************************************************************* */
template<class G, class KEY, class FACTOR2>
void split(const G& g, const PredecessorMap<KEY>& tree, G& Ab1, G& Ab2) {
typedef typename G::sharedFactor F ;
BOOST_FOREACH(const F& factor, g)
{
if (factor->keys().size() > 2)
throw(invalid_argument("split: only support factors with at most two keys"));
if (factor->keys().size() == 1) {
Ab1.push_back(factor);
continue;
}
boost::shared_ptr<FACTOR2> factor2 = boost::dynamic_pointer_cast<
FACTOR2>(factor);
if (!factor2) continue;
KEY key1 = factor2->key1();
KEY key2 = factor2->key2();
// if the tree contains the key
if ((tree.find(key1) != tree.end() &&
tree.find(key1)->second.compare(key2) == 0) ||
(tree.find(key2) != tree.end() &&
tree.find(key2)->second.compare(key1)== 0) )
Ab1.push_back(factor2);
else
Ab2.push_back(factor2);
}
}
}