92 lines
3.1 KiB
C++
92 lines
3.1 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file PlanarSLAMExample.cpp
|
|
* @brief Simple robotics example using the pre-built planar SLAM domain
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#include <cmath>
|
|
#include <iostream>
|
|
|
|
// pull in the planar SLAM domain with all typedefs and helper functions defined
|
|
#include <gtsam/slam/planarSLAM.h>
|
|
#include <gtsam/nonlinear/NonlinearOptimization-inl.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace planarSLAM;
|
|
|
|
/**
|
|
* In this version of the system we make the following assumptions:
|
|
* - All values are axis aligned
|
|
* - Robot poses are facing along the X axis (horizontal, to the right in images)
|
|
* - We have bearing and range information for measurements
|
|
* - We have full odometry for measurements
|
|
* - The robot and landmarks are on a grid, moving 2 meters each step
|
|
* - Landmarks are 2 meters away from the robot trajectory
|
|
*/
|
|
int main(int argc, char** argv) {
|
|
|
|
// create graph container and add factors to it
|
|
Graph graph;
|
|
|
|
/* add prior */
|
|
// gaussian for prior
|
|
SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
|
|
Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin
|
|
graph.addPrior(1, prior_measurement, prior_model); // add directly to graph
|
|
|
|
/* add odometry */
|
|
// general noisemodel for odometry
|
|
SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
|
|
Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
|
|
graph.addOdometry(1, 2, odom_measurement, odom_model);
|
|
graph.addOdometry(2, 3, odom_measurement, odom_model);
|
|
|
|
/* add measurements */
|
|
// general noisemodel for measurements
|
|
SharedDiagonal meas_model = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2));
|
|
|
|
// create the measurement values - indices are (pose id, landmark id)
|
|
Rot2 bearing11 = Rot2::fromDegrees(45),
|
|
bearing21 = Rot2::fromDegrees(90),
|
|
bearing32 = Rot2::fromDegrees(90);
|
|
double range11 = sqrt(4+4),
|
|
range21 = 2.0,
|
|
range32 = 2.0;
|
|
|
|
// create bearing/range factors and add them
|
|
graph.addBearingRange(1, 1, bearing11, range11, meas_model);
|
|
graph.addBearingRange(2, 1, bearing21, range21, meas_model);
|
|
graph.addBearingRange(3, 2, bearing32, range32, meas_model);
|
|
|
|
graph.print("full graph");
|
|
|
|
// initialize to noisy points
|
|
planarSLAM::Values initialEstimate;
|
|
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
|
|
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
|
|
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
|
|
initialEstimate.insertPoint(1, Point2(1.8, 2.1));
|
|
initialEstimate.insertPoint(2, Point2(4.1, 1.8));
|
|
|
|
initialEstimate.print("initial estimate");
|
|
|
|
// optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
|
planarSLAM::Values result = optimize(graph, initialEstimate);
|
|
result.print("final result");
|
|
|
|
return 0;
|
|
}
|
|
|