gtsam/gtsam/nonlinear/NonlinearFactorGraph.h

168 lines
6.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file NonlinearFactorGraph.h
* @brief Factor Graph Constsiting of non-linear factors
* @author Frank Dellaert
* @author Carlos Nieto
* @author Christian Potthast
*/
// \callgraph
#pragma once
#include <gtsam/geometry/Point2.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/inference/FactorGraph.h>
namespace gtsam {
// Forward declarations
class Values;
class Ordering;
class GaussianFactorGraph;
/**
* Formatting options when saving in GraphViz format using
* NonlinearFactorGraph::saveGraph.
*/
struct GTSAM_EXPORT GraphvizFormatting {
enum Axis { X, Y, Z, NEGX, NEGY, NEGZ }; ///< World axes to be assigned to paper axes
Axis paperHorizontalAxis; ///< The world axis assigned to the horizontal paper axis
Axis paperVerticalAxis; ///< The world axis assigned to the vertical paper axis
double figureWidthInches; ///< The figure width on paper in inches
double figureHeightInches; ///< The figure height on paper in inches
double scale; ///< Scale all positions to reduce / increase density
bool mergeSimilarFactors; ///< Merge multiple factors that have the same connectivity
std::map<size_t, Point2> factorPositions; ///< (optional for each factor) Manually specify factor "dot" positions.
/// Default constructor sets up robot coordinates. Paper horizontal is robot Y,
/// paper vertical is robot X. Default figure size of 5x5 in.
GraphvizFormatting() :
paperHorizontalAxis(Y), paperVerticalAxis(X),
figureWidthInches(5), figureHeightInches(5), scale(1),
mergeSimilarFactors(false) {}
};
/**
* A non-linear factor graph is a graph of non-Gaussian, i.e. non-linear factors,
* which derive from NonlinearFactor. The values structures are typically (in SAM) more general
* than just vectors, e.g., Rot3 or Pose3, which are objects in non-linear manifolds.
* Linearizing the non-linear factor graph creates a linear factor graph on the
* tangent vector space at the linearization point. Because the tangent space is a true
* vector space, the config type will be an VectorValues in that linearized factor graph.
*/
class GTSAM_EXPORT NonlinearFactorGraph: public FactorGraph<NonlinearFactor> {
public:
typedef FactorGraph<NonlinearFactor> Base;
typedef NonlinearFactorGraph This;
typedef boost::shared_ptr<This> shared_ptr;
/** Default constructor */
NonlinearFactorGraph() {}
/** Construct from iterator over factors */
template<typename ITERATOR>
NonlinearFactorGraph(ITERATOR firstFactor, ITERATOR lastFactor) : Base(firstFactor, lastFactor) {}
/** Construct from container of factors (shared_ptr or plain objects) */
template<class CONTAINER>
explicit NonlinearFactorGraph(const CONTAINER& factors) : Base(factors) {}
/** Implicit copy/downcast constructor to override explicit template container constructor */
template<class DERIVEDFACTOR>
NonlinearFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph) : Base(graph) {}
/** print just calls base class */
void print(const std::string& str = "NonlinearFactorGraph: ", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/** Write the graph in GraphViz format for visualization */
void saveGraph(std::ostream& stm, const Values& values = Values(),
const GraphvizFormatting& graphvizFormatting = GraphvizFormatting(),
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/** return keys as an ordered set - ordering is by key value */
FastSet<Key> keys() const;
/** unnormalized error, \f$ 0.5 \sum_i (h_i(X_i)-z)^2/\sigma^2 \f$ in the most common case */
double error(const Values& c) const;
/** Unnormalized probability. O(n) */
double probPrime(const Values& c) const;
/**
* Create a symbolic factor graph using an existing ordering
*/
//SymbolicFactorGraph::shared_ptr symbolic() const;
/**
* Create a symbolic factor graph and initial variable ordering that can
* be used for graph operations like determining a fill-reducing ordering.
* The graph and ordering should be permuted after such a fill-reducing
* ordering is found.
*/
//std::pair<SymbolicFactorGraph::shared_ptr, Ordering::shared_ptr>
// symbolic(const Values& config) const;
/**
* Compute a fill-reducing ordering using COLAMD.
*/
Ordering orderingCOLAMD() const;
/**
* Compute a fill-reducing ordering with constraints using CCOLAMD
*
* @param constraints is a map of Key->group, where 0 is unconstrained, and higher
* group numbers are further back in the ordering. Only keys with nonzero group
* indices need to appear in the constraints, unconstrained is assumed for all
* other variables
*/
Ordering orderingCOLAMDConstrained(const FastMap<Key, int>& constraints) const;
/**
* linearize a nonlinear factor graph
*/
boost::shared_ptr<GaussianFactorGraph> linearize(const Values& linearizationPoint) const;
/**
* Clone() performs a deep-copy of the graph, including all of the factors
*/
NonlinearFactorGraph clone() const;
/**
* Rekey() performs a deep-copy of all of the factors, and changes
* keys according to a mapping.
*
* Keys not specified in the mapping will remain unchanged.
*
* @param rekey_mapping is a map of old->new keys
* @result a cloned graph with updated keys
*/
NonlinearFactorGraph rekey(const std::map<Key,Key>& rekey_mapping) const;
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NonlinearFactorGraph",
boost::serialization::base_object<Base>(*this));
}
};
} // namespace