gtsam/gtsam_unstable/slam/tests/testTOAFactor.cpp

265 lines
7.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testTOAFactor.cpp
* @brief Unit tests for "Time of Arrival" factor
* @author Frank Dellaert
* @author Jay Chakravarty
* @date December 2014
*/
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam_unstable/nonlinear/ExpressionFactor.h>
#include <gtsam/geometry/Point3.h>
#include <cmath>
namespace gtsam {
/// A space-time event
class Event {
double time_; ///< Time event was generated
Point3 location_; ///< Location at time event was generated
public:
/// Speed of sound
static const double Speed;
/// Default Constructor
Event() :
time_(0) {
}
/// Constructor from time and location
Event(double t, const Point3& p) :
time_(t), location_(p) {
}
/// Constructor with doubles
Event(double t, double x, double y, double z) :
time_(t), location_(x, y, z) {
}
/** print with optional string */
void print(const std::string& s = "") const {
std::cout << s << ", time = " << time_ << std::endl;
location_.print("location");
}
/** equals with an tolerance */
bool equals(const Event& other, double tol = 1e-9) const {
return std::abs(time_ - other.time_) < tol
&& location_.equals(other.location_, tol);
}
/// Manifold stuff:
size_t dim() const {
return 4;
}
static size_t Dim() {
return 4;
}
/// Updates a with tangent space delta
inline Event retract(const Vector4& v) const {
return Event(time_ + v[0], location_.retract(v.tail(3)));
}
/// Returns inverse retraction
inline Vector4 localCoordinates(const Event& q) const {
return Vector4::Zero(); // TODO
}
/// Time of arrival to given microphone
double toa(const Point3& microphone, //
OptionalJacobian<1, 4> H1 = boost::none, //
OptionalJacobian<1, 3> H2 = boost::none) const {
Matrix13 D1, D2;
double distance = location_.distance(microphone, D1, D2);
if (H1) {
// derivative of toa with respect to event
*H1 << 1, D1 / Speed;
}
if (H2) {
// derivative of toa with respect to microphone location
*H2 << D2 / Speed;
}
return time_ + distance / Speed;
}
};
const double Event::Speed = 330;
// Define GTSAM traits
namespace traits {
template<>
struct GTSAM_EXPORT dimension<Event> : public boost::integral_constant<int, 4> {
};
}
/// A "Time of Arrival" factor
class TOAFactor: public ExpressionFactor<double> {
typedef Expression<double> double_;
public:
/**
* Constructor
* @param some expression yielding an event
* @param microphone_ expression yielding a microphone location
* @param toaMeasurement time of arrival at microphone
* @param model noise model
*/
TOAFactor(const Expression<Event>& event_,
const Expression<Point3>& microphone_, double toaMeasurement,
const SharedNoiseModel& model) :
ExpressionFactor<double>(model, toaMeasurement,
double_(&Event::toa, event_, microphone_)) {
}
};
} //\ namespace gtsam
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
using namespace std;
using namespace gtsam;
// Create a noise model for the TOA error
//static const double ms = 1e-3;
static const double cm = 1e-2;
typedef Eigen::Matrix<double, 1, 1> Vector1;
static SharedNoiseModel model(noiseModel::Unit::Create(1));
//*****************************************************************************
TEST( Event, Constructor ) {
const double t = 0;
Event actual(t, 201.5 * cm, 201.5 * cm, (212 - 45) * cm);
}
//*****************************************************************************
TEST( Event, Toa1 ) {
Point3 microphone;
Event event(0, 1, 0, 0);
double expected = 1 / Event::Speed;
EXPECT_DOUBLES_EQUAL(expected, event.toa(microphone), 1e-9);
}
//*****************************************************************************
TEST( Event, Toa2 ) {
Point3 microphone;
double timeOfEvent = 25;
Event event(timeOfEvent, 1, 0, 0);
double expectedTOA = timeOfEvent + 1 / Event::Speed;
EXPECT_DOUBLES_EQUAL(expectedTOA, event.toa(microphone), 1e-9);
}
//*****************************************************************************
TEST( Event, Expression ) {
Key key = 12;
Expression<Event> event_(key);
Point3 microphone;
Expression<Point3> knownMicrophone_(microphone); // constant expression
Expression<double> expression(&Event::toa, event_, knownMicrophone_);
// double timeOfEvent = 25;
// Event event12(timeOfEvent, 1, 0, 0);
// Values values;
// values.insert(key,event12);
// double expectedTOA = timeOfEvent + 1 / Event::Speed;
// EXPECT_DOUBLES_EQUAL(expectedTOA, expression.value(values), 1e-9);
}
//*****************************************************************************
TEST(Event, Retract) {
Event event, expected(1, 2, 3, 4);
Vector4 v;
v << 1, 2, 3, 4;
EXPECT(assert_equal(expected, event.retract(v)));
}
//*****************************************************************************
TEST( TOAFactor, Construct ) {
Key key = 12;
Expression<Event> event_(key);
Point3 microphone;
Expression<Point3> knownMicrophone_(microphone); // constant expression
double measurement = 7;
TOAFactor factor(event_, knownMicrophone_, measurement, model);
}
//*****************************************************************************
TEST( TOAFactor, WholeEnchilada ) {
// Create microphones
vector<Point3> microphones;
microphones.push_back(Point3(0, 0, 0));
microphones.push_back(Point3(403 * cm, 0, 0));
microphones.push_back(Point3(403 * cm, 403 * cm, 0));
microphones.push_back(Point3(0, 403 * cm, 0));
EXPECT_LONGS_EQUAL(4, microphones.size());
// Create a ground truth point
const double timeOfEvent = 0;
Event groundTruthEvent(timeOfEvent, 201.5 * cm, 201.5 * cm, (212 - 45) * cm);
// Simulate measurements
vector<double> measurements(4);
for (size_t i = 0; i < 4; i++)
measurements[i] = groundTruthEvent.toa(microphones[i]);
// Now, estimate using non-linear optimization
NonlinearFactorGraph graph;
Key key = 12;
Expression<Event> event_(key);
for (size_t i = 0; i < 4; i++) {
Expression<Point3> knownMicrophone_(microphones[i]); // constant expression
graph.add(TOAFactor(event_, knownMicrophone_, measurements[i], model));
}
/// Print the graph
GTSAM_PRINT(graph);
// Create initial estimate
Values initialEstimate;
Event estimatedEvent(timeOfEvent + 0.1, 200 * cm, 150 * cm, 50 * cm);
initialEstimate.insert(key, estimatedEvent);
// Print
initialEstimate.print("Initial Estimate:\n");
// Optimize using Levenberg-Marquardt optimization.
LevenbergMarquardtParams params;
params.setVerbosity("ERROR");
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
Values result = optimizer.optimize();
result.print("Final Result:\n");
EXPECT(assert_equal(groundTruthEvent, result.at<Event>(key)));
}
//*****************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//*****************************************************************************