139 lines
5.3 KiB
C++
139 lines
5.3 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file VisualISAMExample.cpp
|
|
* @brief A visualSLAM example for the structure-from-motion problem on a simulated dataset
|
|
* This version uses iSAM to solve the problem incrementally
|
|
* @author Duy-Nguyen Ta
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
/**
|
|
* A structure-from-motion example with landmarks
|
|
* - The landmarks form a 10 meter cube
|
|
* - The robot rotates around the landmarks, always facing towards the cube
|
|
*/
|
|
|
|
// For loading the data
|
|
#include "SFMdata.h"
|
|
|
|
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
|
|
#include <gtsam/geometry/Point2.h>
|
|
|
|
// Each variable in the system (poses and landmarks) must be identified with a unique key.
|
|
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
|
|
// Here we will use Symbols
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
|
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
|
|
// Here we will use Projection factors to model the camera's landmark observations.
|
|
// Also, we will initialize the robot at some location using a Prior factor.
|
|
#include <gtsam/slam/ProjectionFactor.h>
|
|
|
|
// We want to use iSAM to solve the structure-from-motion problem incrementally, so
|
|
// include iSAM here
|
|
#include <gtsam/nonlinear/NonlinearISAM.h>
|
|
|
|
// iSAM requires as input a set set of new factors to be added stored in a factor graph,
|
|
// and initial guesses for any new variables used in the added factors
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
|
|
#include <vector>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
int main(int argc, char* argv[]) {
|
|
// Define the camera calibration parameters
|
|
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
|
|
|
// Define the camera observation noise model
|
|
auto noise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
|
|
|
// Create the set of ground-truth landmarks
|
|
vector<Point3> points = createPoints();
|
|
|
|
// Create the set of ground-truth poses
|
|
vector<Pose3> poses = createPoses();
|
|
|
|
// Create a NonlinearISAM object which will relinearize and reorder the variables
|
|
// every "relinearizeInterval" updates
|
|
int relinearizeInterval = 3;
|
|
NonlinearISAM isam(relinearizeInterval);
|
|
|
|
// Create a Factor Graph and Values to hold the new data
|
|
NonlinearFactorGraph graph;
|
|
Values initialEstimate;
|
|
|
|
// Loop over the different poses, adding the observations to iSAM incrementally
|
|
for (size_t i = 0; i < poses.size(); ++i) {
|
|
// Add factors for each landmark observation
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
// Create ground truth measurement
|
|
PinholeCamera<Cal3_S2> camera(poses[i], *K);
|
|
Point2 measurement = camera.project(points[j]);
|
|
// Add measurement
|
|
graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(measurement, noise,
|
|
Symbol('x', i), Symbol('l', j), K);
|
|
}
|
|
|
|
// Intentionally initialize the variables off from the ground truth
|
|
Pose3 noise(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
|
Pose3 initial_xi = poses[i].compose(noise);
|
|
|
|
// Add an initial guess for the current pose
|
|
initialEstimate.insert(Symbol('x', i), initial_xi);
|
|
|
|
// If this is the first iteration, add a prior on the first pose to set the coordinate frame
|
|
// and a prior on the first landmark to set the scale
|
|
// Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
|
|
// adding it to iSAM.
|
|
if (i == 0) {
|
|
// Add a prior on pose x0, with 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
|
auto poseNoise = noiseModel::Diagonal::Sigmas(
|
|
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
|
|
graph.addPrior(Symbol('x', 0), poses[0], poseNoise);
|
|
|
|
// Add a prior on landmark l0
|
|
auto pointNoise =
|
|
noiseModel::Isotropic::Sigma(3, 0.1);
|
|
graph.addPrior(Symbol('l', 0), points[0], pointNoise);
|
|
|
|
// Add initial guesses to all observed landmarks
|
|
Point3 noise(-0.25, 0.20, 0.15);
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
// Intentionally initialize the variables off from the ground truth
|
|
Point3 initial_lj = points[j] + noise;
|
|
initialEstimate.insert(Symbol('l', j), initial_lj);
|
|
}
|
|
|
|
} else {
|
|
// Update iSAM with the new factors
|
|
isam.update(graph, initialEstimate);
|
|
Values currentEstimate = isam.estimate();
|
|
cout << "****************************************************" << endl;
|
|
cout << "Frame " << i << ": " << endl;
|
|
currentEstimate.print("Current estimate: ");
|
|
|
|
// Clear the factor graph and values for the next iteration
|
|
graph.resize(0);
|
|
initialEstimate.clear();
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/* ************************************************************************* */
|