127 lines
4.6 KiB
C++
127 lines
4.6 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SFMExample_SmartFactorPCG.cpp
|
|
* @brief Version of SFMExample_SmartFactor that uses Preconditioned Conjugate Gradient
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
// For an explanation of these headers, see SFMExample_SmartFactor.cpp
|
|
#include "SFMdata.h"
|
|
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
|
|
|
// These extra headers allow us a LM outer loop with PCG linear solver (inner loop)
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/linear/Preconditioner.h>
|
|
#include <gtsam/linear/PCGSolver.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// Make the typename short so it looks much cleaner
|
|
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
|
|
|
// create a typedef to the camera type
|
|
typedef PinholePose<Cal3_S2> Camera;
|
|
|
|
/* ************************************************************************* */
|
|
int main(int argc, char* argv[]) {
|
|
// Define the camera calibration parameters
|
|
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
|
|
|
// Define the camera observation noise model
|
|
auto measurementNoise =
|
|
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
|
|
|
// Create the set of ground-truth landmarks and poses
|
|
vector<Point3> points = createPoints();
|
|
vector<Pose3> poses = createPoses();
|
|
|
|
// Create a factor graph
|
|
NonlinearFactorGraph graph;
|
|
|
|
// Simulated measurements from each camera pose, adding them to the factor graph
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
// every landmark represent a single landmark, we use shared pointer to init
|
|
// the factor, and then insert measurements.
|
|
SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K));
|
|
|
|
for (size_t i = 0; i < poses.size(); ++i) {
|
|
// generate the 2D measurement
|
|
Camera camera(poses[i], K);
|
|
Point2 measurement = camera.project(points[j]);
|
|
|
|
// call add() function to add measurement into a single factor
|
|
smartfactor->add(measurement, i);
|
|
}
|
|
|
|
// insert the smart factor in the graph
|
|
graph.push_back(smartfactor);
|
|
}
|
|
|
|
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
|
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
|
auto noise = noiseModel::Diagonal::Sigmas(
|
|
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
|
|
graph.addPrior(0, poses[0], noise);
|
|
|
|
// Fix the scale ambiguity by adding a prior
|
|
graph.addPrior(1, poses[0], noise);
|
|
|
|
// Create the initial estimate to the solution
|
|
Values initialEstimate;
|
|
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
|
for (size_t i = 0; i < poses.size(); ++i)
|
|
initialEstimate.insert(i, poses[i].compose(delta));
|
|
|
|
// We will use LM in the outer optimization loop, but by specifying
|
|
// "Iterative" below We indicate that an iterative linear solver should be
|
|
// used. In addition, the *type* of the iterativeParams decides on the type of
|
|
// iterative solver, in this case the SPCG (subgraph PCG)
|
|
LevenbergMarquardtParams parameters;
|
|
parameters.linearSolverType = NonlinearOptimizerParams::Iterative;
|
|
parameters.absoluteErrorTol = 1e-10;
|
|
parameters.relativeErrorTol = 1e-10;
|
|
parameters.maxIterations = 500;
|
|
PCGSolverParameters::shared_ptr pcg =
|
|
boost::make_shared<PCGSolverParameters>();
|
|
pcg->preconditioner_ =
|
|
boost::make_shared<BlockJacobiPreconditionerParameters>();
|
|
// Following is crucial:
|
|
pcg->setEpsilon_abs(1e-10);
|
|
pcg->setEpsilon_rel(1e-10);
|
|
parameters.iterativeParams = pcg;
|
|
|
|
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
|
|
Values result = optimizer.optimize();
|
|
|
|
// Display result as in SFMExample_SmartFactor.run
|
|
result.print("Final results:\n");
|
|
Values landmark_result;
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
auto smart = boost::dynamic_pointer_cast<SmartFactor>(graph[j]);
|
|
if (smart) {
|
|
boost::optional<Point3> point = smart->point(result);
|
|
if (point) // ignore if boost::optional return nullptr
|
|
landmark_result.insert(j, *point);
|
|
}
|
|
}
|
|
|
|
landmark_result.print("Landmark results:\n");
|
|
cout << "final error: " << graph.error(result) << endl;
|
|
cout << "number of iterations: " << optimizer.iterations() << endl;
|
|
|
|
return 0;
|
|
}
|
|
/* ************************************************************************* */
|
|
|