gtsam/gtsam/hybrid/tests/testGaussianMixture.cpp

171 lines
6.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianMixture.cpp
* @brief Test hybrid elimination with a simple mixture model
* @author Varun Agrawal
* @author Frank Dellaert
* @date September 2024
*/
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/Key.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/linear/NoiseModel.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace gtsam;
using symbol_shorthand::M;
using symbol_shorthand::Z;
// Define mode key and an assignment m==1
const DiscreteKey m(M(0), 2);
const DiscreteValues m1Assignment{{M(0), 1}};
// Define a 50/50 prior on the mode
DiscreteConditional::shared_ptr mixing =
std::make_shared<DiscreteConditional>(m, "60/40");
/// Gaussian density function
double Gaussian(double mu, double sigma, double z) {
return exp(-0.5 * pow((z - mu) / sigma, 2)) / sqrt(2 * M_PI * sigma * sigma);
};
/**
* Closed form computation of P(m=1|z).
* If sigma0 == sigma1, it simplifies to a sigmoid function.
* Hardcodes 60/40 prior on mode.
*/
double prob_m_z(double mu0, double mu1, double sigma0, double sigma1,
double z) {
const double p0 = 0.6 * Gaussian(mu0, sigma0, z);
const double p1 = 0.4 * Gaussian(mu1, sigma1, z);
return p1 / (p0 + p1);
};
/*
* Test a Gaussian Mixture Model P(m)p(z|m) with same sigma.
* The posterior, as a function of z, should be a sigmoid function.
*/
TEST(GaussianMixture, GaussianMixtureModel) {
double mu0 = 1.0, mu1 = 3.0;
double sigma = 2.0;
// Create a Gaussian mixture model p(z|m) with same sigma.
HybridBayesNet gmm;
std::vector<std::pair<Vector, double>> parameters{{Vector1(mu0), sigma},
{Vector1(mu1), sigma}};
gmm.emplace_shared<HybridGaussianConditional>(m, Z(0), parameters);
gmm.push_back(mixing);
// At the halfway point between the means, we should get P(m|z)=0.5
double midway = mu1 - mu0;
auto eliminationResult =
gmm.toFactorGraph({{Z(0), Vector1(midway)}}).eliminateSequential();
auto pMid = *eliminationResult->at(0)->asDiscrete();
EXPECT(assert_equal(DiscreteConditional(m, "60/40"), pMid));
// Everywhere else, the result should be a sigmoid.
for (const double shift : {-4, -2, 0, 2, 4}) {
const double z = midway + shift;
const double expected = prob_m_z(mu0, mu1, sigma, sigma, z);
// Workflow 1: convert HBN to HFG and solve
auto eliminationResult1 =
gmm.toFactorGraph({{Z(0), Vector1(z)}}).eliminateSequential();
auto posterior1 = *eliminationResult1->at(0)->asDiscrete();
EXPECT_DOUBLES_EQUAL(expected, posterior1(m1Assignment), 1e-8);
// Workflow 2: directly specify HFG and solve
HybridGaussianFactorGraph hfg1;
hfg1.emplace_shared<DecisionTreeFactor>(
m, std::vector{Gaussian(mu0, sigma, z), Gaussian(mu1, sigma, z)});
hfg1.push_back(mixing);
auto eliminationResult2 = hfg1.eliminateSequential();
auto posterior2 = *eliminationResult2->at(0)->asDiscrete();
EXPECT_DOUBLES_EQUAL(expected, posterior2(m1Assignment), 1e-8);
}
}
/*
* Test a Gaussian Mixture Model P(m)p(z|m) with different sigmas.
* The posterior, as a function of z, should be a unimodal function.
*/
TEST(GaussianMixture, GaussianMixtureModel2) {
double mu0 = 1.0, mu1 = 3.0;
double sigma0 = 8.0, sigma1 = 4.0;
// Create a Gaussian mixture model p(z|m) with same sigma.
HybridBayesNet gmm;
std::vector<std::pair<Vector, double>> parameters{{Vector1(mu0), sigma0},
{Vector1(mu1), sigma1}};
gmm.emplace_shared<HybridGaussianConditional>(m, Z(0), parameters);
gmm.push_back(mixing);
// We get zMax=3.1333 by finding the maximum value of the function, at which
// point the mode m==1 is about twice as probable as m==0.
double zMax = 3.133;
const VectorValues vv{{Z(0), Vector1(zMax)}};
auto gfg = gmm.toFactorGraph(vv);
// Equality of posteriors asserts that the elimination is correct (same ratios
// for all modes)
const auto& expectedDiscretePosterior = gmm.discretePosterior(vv);
EXPECT(assert_equal(expectedDiscretePosterior, gfg.discretePosterior(vv)));
// Eliminate the graph!
auto eliminationResultMax = gfg.eliminateSequential();
// Equality of posteriors asserts that the elimination is correct (same ratios
// for all modes)
EXPECT(assert_equal(expectedDiscretePosterior,
eliminationResultMax->discretePosterior(vv)));
auto pMax = *eliminationResultMax->at(0)->asDiscrete();
EXPECT(assert_equal(DiscreteConditional(m, "42/58"), pMax, 1e-4));
// Everywhere else, the result should be a bell curve like function.
for (const double shift : {-4, -2, 0, 2, 4}) {
const double z = zMax + shift;
const double expected = prob_m_z(mu0, mu1, sigma0, sigma1, z);
// Workflow 1: convert HBN to HFG and solve
auto eliminationResult1 =
gmm.toFactorGraph({{Z(0), Vector1(z)}}).eliminateSequential();
auto posterior1 = *eliminationResult1->at(0)->asDiscrete();
EXPECT_DOUBLES_EQUAL(expected, posterior1(m1Assignment), 1e-8);
// Workflow 2: directly specify HFG and solve
HybridGaussianFactorGraph hfg;
hfg.emplace_shared<DecisionTreeFactor>(
m, std::vector{Gaussian(mu0, sigma0, z), Gaussian(mu1, sigma1, z)});
hfg.push_back(mixing);
auto eliminationResult2 = hfg.eliminateSequential();
auto posterior2 = *eliminationResult2->at(0)->asDiscrete();
EXPECT_DOUBLES_EQUAL(expected, posterior2(m1Assignment), 1e-8);
}
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */