1113 lines
35 KiB
C++
1113 lines
35 KiB
C++
/*
|
|
* @file testSQP.cpp
|
|
* @brief demos of SQP using existing gtsam components
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <cmath>
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
#include <boost/assign/std/map.hpp> // for insert
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/shared_ptr.hpp>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#define GTSAM_MAGIC_KEY
|
|
|
|
#include <Point2.h>
|
|
#include <Pose3.h>
|
|
#include <GaussianFactorGraph.h>
|
|
#include <NonlinearOptimizer.h>
|
|
#include <simulated2D.h>
|
|
#include <Ordering.h>
|
|
#include <visualSLAM.h>
|
|
|
|
// templated implementations
|
|
#include <NonlinearFactorGraph-inl.h>
|
|
#include <NonlinearConstraint-inl.h>
|
|
#include <NonlinearOptimizer-inl.h>
|
|
#include <TupleConfig-inl.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace boost;
|
|
using namespace boost::assign;
|
|
|
|
// Models to use
|
|
SharedDiagonal probModel1 = sharedSigma(1,1.0);
|
|
SharedDiagonal probModel2 = sharedSigma(2,1.0);
|
|
SharedDiagonal constraintModel1 = noiseModel::Constrained::All(1);
|
|
|
|
// trick from some reading group
|
|
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
|
|
|
|
/* *********************************************************************
|
|
* This example uses a nonlinear objective function and
|
|
* nonlinear equality constraint. The formulation is actually
|
|
* the Cholesky form that creates the full Hessian explicitly,
|
|
* which should really be avoided with our QR-based machinery.
|
|
*
|
|
* Note: the update equation used here has a fixed step size
|
|
* and gain that is rather arbitrarily chosen, and as such,
|
|
* will take a silly number of iterations.
|
|
*/
|
|
TEST (SQP, problem1_cholesky ) {
|
|
bool verbose = false;
|
|
// use a nonlinear function of f(x) = x^2+y^2
|
|
// nonlinear equality constraint: g(x) = x^2-5-y=0
|
|
// Lagrangian: f(x) + \lambda*g(x)
|
|
|
|
// Symbols
|
|
Symbol x1("x1"), y1("y1"), L1("L1");
|
|
|
|
// state structure: [x y \lambda]
|
|
VectorConfig init, state;
|
|
init.insert(x1, Vector_(1, 1.0));
|
|
init.insert(y1, Vector_(1, 1.0));
|
|
init.insert(L1, Vector_(1, 1.0));
|
|
state = init;
|
|
|
|
if (verbose) init.print("Initial State");
|
|
|
|
// loop until convergence
|
|
int maxIt = 10;
|
|
for (int i = 0; i<maxIt; ++i) {
|
|
if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
|
|
|
|
// extract the states
|
|
double x, y, lambda;
|
|
x = state[x1](0);
|
|
y = state[y1](0);
|
|
lambda = state[L1](0);
|
|
|
|
// calculate the components
|
|
Matrix H1, H2, gradG;
|
|
Vector gradL, gx;
|
|
|
|
// hessian of lagrangian function, in two columns:
|
|
H1 = Matrix_(2,1,
|
|
2.0+2.0*lambda,
|
|
0.0);
|
|
H2 = Matrix_(2,1,
|
|
0.0,
|
|
2.0);
|
|
|
|
// deriviative of lagrangian function
|
|
gradL = Vector_(2,
|
|
2.0*x*(1+lambda),
|
|
2.0*y-lambda);
|
|
|
|
// constraint derivatives
|
|
gradG = Matrix_(2,1,
|
|
2.0*x,
|
|
0.0);
|
|
|
|
// constraint value
|
|
gx = Vector_(1,
|
|
x*x-5-y);
|
|
|
|
// create a factor for the states
|
|
GaussianFactor::shared_ptr f1(new
|
|
GaussianFactor(x1, H1, y1, H2, L1, gradG, gradL, probModel2));
|
|
|
|
// create a factor for the lagrange multiplier
|
|
GaussianFactor::shared_ptr f2(new
|
|
GaussianFactor(x1, -sub(gradG, 0, 1, 0, 1),
|
|
y1, -sub(gradG, 1, 2, 0, 1), -gx, constraintModel1));
|
|
|
|
// construct graph
|
|
GaussianFactorGraph fg;
|
|
fg.push_back(f1);
|
|
fg.push_back(f2);
|
|
if (verbose) fg.print("Graph");
|
|
|
|
// solve
|
|
Ordering ord;
|
|
ord += x1, y1, L1;
|
|
VectorConfig delta = fg.optimize(ord).scale(-1.0);
|
|
if (verbose) delta.print("Delta");
|
|
|
|
// update initial estimate
|
|
VectorConfig newState = expmap(state, delta);
|
|
state = newState;
|
|
|
|
if (verbose) state.print("Updated State");
|
|
}
|
|
|
|
// verify that it converges to the nearest optimal point
|
|
VectorConfig expected;
|
|
expected.insert(L1, Vector_(1, -1.0));
|
|
expected.insert(x1, Vector_(1, 2.12));
|
|
expected.insert(y1, Vector_(1, -0.5));
|
|
CHECK(assert_equal(expected,state, 1e-2));
|
|
}
|
|
|
|
/* *********************************************************************
|
|
* This example uses a nonlinear objective function and
|
|
* nonlinear equality constraint. This formulation splits
|
|
* the constraint into a factor and a linear constraint.
|
|
*
|
|
* This example uses the same silly number of iterations as the
|
|
* previous example.
|
|
*/
|
|
TEST (SQP, problem1_sqp ) {
|
|
bool verbose = false;
|
|
// use a nonlinear function of f(x) = x^2+y^2
|
|
// nonlinear equality constraint: g(x) = x^2-5-y=0
|
|
// Lagrangian: f(x) + \lambda*g(x)
|
|
|
|
// Symbols
|
|
Symbol x1("x1"), y1("y1"), L1("L1");
|
|
|
|
// state structure: [x y \lambda]
|
|
VectorConfig init, state;
|
|
init.insert(x1, Vector_(1, 1.0));
|
|
init.insert(y1, Vector_(1, 1.0));
|
|
init.insert(L1, Vector_(1, 1.0));
|
|
state = init;
|
|
|
|
if (verbose) init.print("Initial State");
|
|
|
|
// loop until convergence
|
|
int maxIt = 5;
|
|
for (int i = 0; i<maxIt; ++i) {
|
|
if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
|
|
|
|
// extract the states
|
|
double x, y, lambda;
|
|
x = state[x1](0);
|
|
y = state[y1](0);
|
|
lambda = state[L1](0);
|
|
|
|
/** create the linear factor
|
|
* ||h(x)-z||^2 => ||Ax-b||^2
|
|
* where:
|
|
* h(x) simply returns the inputs
|
|
* z zeros(2)
|
|
* A identity
|
|
* b linearization point
|
|
*/
|
|
Matrix A = eye(2);
|
|
Vector b = Vector_(2, x, y);
|
|
GaussianFactor::shared_ptr f1(
|
|
new GaussianFactor(x1, sub(A, 0,2, 0,1), // A(:,1)
|
|
y1, sub(A, 0,2, 1,2), // A(:,2)
|
|
b, // rhs of f(x)
|
|
probModel2)); // arbitrary sigma
|
|
|
|
/** create the constraint-linear factor
|
|
* Provides a mechanism to use variable gain to force the constraint
|
|
* \lambda*gradG*dx + d\lambda = zero
|
|
* formulated in matrix form as:
|
|
* [\lambda*gradG eye(1)] [dx; d\lambda] = zero
|
|
*/
|
|
Matrix gradG = Matrix_(1, 2,2*x, -1.0);
|
|
GaussianFactor::shared_ptr f2(
|
|
new GaussianFactor(x1, lambda*sub(gradG, 0,1, 0,1), // scaled gradG(:,1)
|
|
y1, lambda*sub(gradG, 0,1, 1,2), // scaled gradG(:,2)
|
|
L1, eye(1), // dlambda term
|
|
Vector_(1, 0.0), // rhs is zero
|
|
probModel1)); // arbitrary sigma
|
|
|
|
// create the actual constraint
|
|
// [gradG] [x; y] - g = 0
|
|
Vector g = Vector_(1,x*x-y-5);
|
|
GaussianFactor::shared_ptr c1(
|
|
new GaussianFactor(x1, sub(gradG, 0,1, 0,1), // slice first part of gradG
|
|
y1, sub(gradG, 0,1, 1,2), // slice second part of gradG
|
|
g, // value of constraint function
|
|
constraintModel1)); // force to constraint
|
|
|
|
// construct graph
|
|
GaussianFactorGraph fg;
|
|
fg.push_back(f1);
|
|
fg.push_back(f2);
|
|
fg.push_back(c1);
|
|
if (verbose) fg.print("Graph");
|
|
|
|
// solve
|
|
Ordering ord;
|
|
ord += x1, y1, L1;
|
|
VectorConfig delta = fg.optimize(ord);
|
|
if (verbose) delta.print("Delta");
|
|
|
|
// update initial estimate
|
|
VectorConfig newState = expmap(state, delta.scale(-1.0));
|
|
|
|
// set the state to the updated state
|
|
state = newState;
|
|
|
|
if (verbose) state.print("Updated State");
|
|
}
|
|
|
|
// verify that it converges to the nearest optimal point
|
|
VectorConfig expected;
|
|
expected.insert(x1, Vector_(1, 2.12));
|
|
expected.insert(y1, Vector_(1, -0.5));
|
|
CHECK(assert_equal(state[x1], expected[x1], 1e-2));
|
|
CHECK(assert_equal(state[y1], expected[y1], 1e-2));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
|
|
// Basic configs
|
|
typedef LieConfig<LagrangeKey, Vector> LagrangeConfig;
|
|
|
|
// full components
|
|
typedef TupleConfig3<LieConfig<simulated2D::PoseKey, Point2>,
|
|
LieConfig<simulated2D::PointKey, Point2>,
|
|
LieConfig<LagrangeKey, Vector> > Config2D;
|
|
//typedef TupleConfig<LagrangeConfig, TupleConfigEnd<simulated2D::Config> > Config2D;
|
|
typedef NonlinearFactorGraph<Config2D> Graph2D;
|
|
typedef NonlinearEquality<Config2D, simulated2D::PoseKey, Point2> NLE;
|
|
typedef boost::shared_ptr<simulated2D::GenericMeasurement<Config2D> > shared;
|
|
typedef NonlinearOptimizer<Graph2D, Config2D> Optimizer;
|
|
|
|
/*
|
|
* Determining a ground truth linear system
|
|
* with two poses seeing one landmark, with each pose
|
|
* constrained to a particular value
|
|
*/
|
|
TEST (SQP, two_pose_truth ) {
|
|
bool verbose = false;
|
|
|
|
// create a graph
|
|
shared_ptr<Graph2D> graph(new Graph2D);
|
|
|
|
// add the constraints on the ends
|
|
// position (1, 1) constraint for x1
|
|
// position (5, 6) constraint for x2
|
|
simulated2D::PoseKey x1(1), x2(2);
|
|
simulated2D::PointKey l1(1);
|
|
Point2 pt_x1(1.0, 1.0),
|
|
pt_x2(5.0, 6.0);
|
|
shared_ptr<NLE> ef1(new NLE(x1, pt_x1)),
|
|
ef2(new NLE(x2, pt_x2));
|
|
graph->push_back(ef1);
|
|
graph->push_back(ef2);
|
|
|
|
// measurement from x1 to l1
|
|
Point2 z1(0.0, 5.0);
|
|
SharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1));
|
|
shared f1(new simulated2D::GenericMeasurement<Config2D>(z1, sigma, x1,l1));
|
|
graph->push_back(f1);
|
|
|
|
// measurement from x2 to l1
|
|
Point2 z2(-4.0, 0.0);
|
|
shared f2(new simulated2D::GenericMeasurement<Config2D>(z2, sigma, x2,l1));
|
|
graph->push_back(f2);
|
|
|
|
// create an initial estimate
|
|
Point2 pt_l1(
|
|
1.0, 6.0 // ground truth
|
|
//1.2, 5.6 // small error
|
|
);
|
|
shared_ptr<Config2D> initialEstimate(new Config2D);
|
|
initialEstimate->insert(l1, pt_l1);
|
|
initialEstimate->insert(x1, pt_x1);
|
|
initialEstimate->insert(x2, pt_x2);
|
|
|
|
// optimize the graph
|
|
shared_ptr<Ordering> ordering(new Ordering());
|
|
*ordering += "x1", "x2", "l1";
|
|
Optimizer::shared_solver solver(new Optimizer::solver(ordering));
|
|
Optimizer optimizer(graph, initialEstimate, solver);
|
|
|
|
// display solution
|
|
double relativeThreshold = 1e-5;
|
|
double absoluteThreshold = 1e-5;
|
|
Optimizer act_opt = optimizer.gaussNewton(relativeThreshold, absoluteThreshold);
|
|
boost::shared_ptr<const Config2D> actual = act_opt.config();
|
|
if (verbose) actual->print("Configuration after optimization");
|
|
|
|
// verify
|
|
Config2D expected;
|
|
expected.insert(x1, pt_x1);
|
|
expected.insert(x2, pt_x2);
|
|
expected.insert(l1, Point2(1.0, 6.0));
|
|
CHECK(assert_equal(expected, *actual, 1e-5));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
namespace sqp_test1 {
|
|
|
|
// binary constraint between landmarks
|
|
/** g(x) = x-y = 0 */
|
|
Vector g(const Config2D& config, const list<simulated2D::PointKey>& keys) {
|
|
Point2 pt1, pt2;
|
|
pt1 = config[simulated2D::PointKey(keys.front().index())];
|
|
pt2 = config[simulated2D::PointKey(keys.back().index())];
|
|
return Vector_(2, pt1.x() - pt2.x(), pt1.y() - pt2.y());
|
|
}
|
|
|
|
/** jacobian at l1 */
|
|
Matrix G1(const Config2D& config, const list<simulated2D::PointKey>& keys) {
|
|
return eye(2);
|
|
}
|
|
|
|
/** jacobian at l2 */
|
|
Matrix G2(const Config2D& config, const list<simulated2D::PointKey>& keys) {
|
|
return -1 * eye(2);
|
|
}
|
|
|
|
} // \namespace sqp_test1
|
|
|
|
namespace sqp_test2 {
|
|
|
|
// Unary Constraint on x1
|
|
/** g(x) = x -[1;1] = 0 */
|
|
Vector g(const Config2D& config, const list<simulated2D::PoseKey>& keys) {
|
|
Point2 x = config[keys.front()];
|
|
return Vector_(2, x.x() - 1.0, x.y() - 1.0);
|
|
}
|
|
|
|
/** jacobian at x1 */
|
|
Matrix G(const Config2D& config, const list<simulated2D::PoseKey>& keys) {
|
|
return eye(2);
|
|
}
|
|
|
|
} // \namespace sqp_test2
|
|
|
|
|
|
typedef NonlinearConstraint2<
|
|
Config2D, simulated2D::PointKey, Point2, simulated2D::PointKey, Point2> NLC2;
|
|
|
|
/* *********************************************************************
|
|
* Version that actually uses nonlinear equality constraints
|
|
* to to perform optimization. Same as above, but no
|
|
* equality constraint on x2, and two landmarks that
|
|
* should be the same. Note that this is a linear system,
|
|
* so it will converge in one step.
|
|
*/
|
|
TEST (SQP, two_pose ) {
|
|
bool verbose = false;
|
|
|
|
// create the graph
|
|
shared_ptr<Graph2D> graph(new Graph2D);
|
|
|
|
// add the constraints on the ends
|
|
// position (1, 1) constraint for x1
|
|
// position (5, 6) constraint for x2
|
|
simulated2D::PoseKey x1(1), x2(2);
|
|
simulated2D::PointKey l1(1), l2(2);
|
|
Point2 pt_x1(1.0, 1.0),
|
|
pt_x2(5.0, 6.0);
|
|
shared_ptr<NLE> ef1(new NLE(x1, pt_x1));
|
|
graph->push_back(ef1);
|
|
|
|
// measurement from x1 to l1
|
|
Point2 z1(0.0, 5.0);
|
|
SharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1));
|
|
shared f1(new simulated2D::GenericMeasurement<Config2D>(z1, sigma, x1,l1));
|
|
graph->push_back(f1);
|
|
|
|
// measurement from x2 to l2
|
|
Point2 z2(-4.0, 0.0);
|
|
shared f2(new simulated2D::GenericMeasurement<Config2D>(z2, sigma, x2,l2));
|
|
graph->push_back(f2);
|
|
|
|
// equality constraint between l1 and l2
|
|
LagrangeKey L1(1);
|
|
list<simulated2D::PointKey> keys2; keys2 += l1, l2;
|
|
boost::shared_ptr<NLC2 > c2(new NLC2(
|
|
boost::bind(sqp_test1::g, _1, keys2),
|
|
l1, boost::bind(sqp_test1::G1, _1, keys2),
|
|
l2, boost::bind(sqp_test1::G2, _1, keys2),
|
|
2, L1));
|
|
graph->push_back(c2);
|
|
|
|
if (verbose) graph->print("Initial nonlinear graph with constraints");
|
|
|
|
// create an initial estimate
|
|
shared_ptr<Config2D> initialEstimate(new Config2D);
|
|
initialEstimate->insert(x1, pt_x1);
|
|
initialEstimate->insert(x2, Point2());
|
|
initialEstimate->insert(l1, Point2(1.0, 6.0)); // ground truth
|
|
initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
|
|
initialEstimate->insert(L1, Vector_(2, 1.0, 1.0)); // connect the landmarks
|
|
|
|
// create state config variables and initialize them
|
|
Config2D state(*initialEstimate);
|
|
|
|
// linearize the graph
|
|
boost::shared_ptr<GaussianFactorGraph> fg = graph->linearize(state);
|
|
|
|
if (verbose) fg->print("Linearized graph");
|
|
|
|
// create an ordering
|
|
Ordering ordering;
|
|
ordering += "x1", "x2", "l1", "l2", "L1";
|
|
|
|
// optimize linear graph to get full delta config
|
|
GaussianBayesNet cbn = fg->eliminate(ordering);
|
|
if (verbose) cbn.print("ChordalBayesNet");
|
|
|
|
VectorConfig delta = optimize(cbn); //fg.optimize(ordering);
|
|
if (verbose) delta.print("Delta Config");
|
|
|
|
// update both state variables
|
|
state = expmap(state, delta);
|
|
if (verbose) state.print("newState");
|
|
|
|
// verify
|
|
Config2D expected;
|
|
expected.insert(x1, pt_x1);
|
|
expected.insert(l1, Point2(1.0, 6.0));
|
|
expected.insert(l2, Point2(1.0, 6.0));
|
|
expected.insert(x2, Point2(5.0, 6.0));
|
|
expected.insert(L1, Vector_(2, 6.0, 7.0));
|
|
CHECK(assert_equal(expected, state, 1e-5));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
// VSLAM Examples
|
|
/* ********************************************************************* */
|
|
// make a realistic calibration matrix
|
|
double fov = 60; // degrees
|
|
size_t w=640,h=480;
|
|
Cal3_S2 K(fov,w,h);
|
|
boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
|
|
|
|
using namespace gtsam::visualSLAM;
|
|
using namespace boost;
|
|
|
|
// typedefs for visual SLAM example
|
|
typedef TypedSymbol<Pose3, 'x'> Pose3Key;
|
|
typedef TypedSymbol<Point3, 'l'> Point3Key;
|
|
typedef TupleConfig3<LieConfig<LagrangeKey, Vector>,
|
|
LieConfig<Pose3Key, Pose3>,
|
|
LieConfig<Point3Key, Point3> > VConfig;
|
|
typedef NonlinearFactorGraph<VConfig> VGraph;
|
|
typedef boost::shared_ptr<GenericProjectionFactor<VConfig> > shared_vf;
|
|
typedef NonlinearOptimizer<VGraph,VConfig> VOptimizer;
|
|
typedef NonlinearConstraint2<
|
|
VConfig, visualSLAM::PointKey, Pose3, visualSLAM::PointKey, Pose3> VNLC2;
|
|
typedef NonlinearEquality<VConfig, Pose3Key, Pose3> Pose3Constraint;
|
|
|
|
/**
|
|
* Ground truth for a visual SLAM example with stereo vision
|
|
*/
|
|
TEST (SQP, stereo_truth ) {
|
|
bool verbose = false;
|
|
|
|
// create initial estimates
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
SimpleCamera camera1(K, pose1);
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
SimpleCamera camera2(K, pose2);
|
|
Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmarkNoisy(1.0, 6.0, 0.0);
|
|
|
|
// create truth config
|
|
boost::shared_ptr<VConfig> truthConfig(new VConfig);
|
|
truthConfig->insert(Pose3Key(1), camera1.pose());
|
|
truthConfig->insert(Pose3Key(2), camera2.pose());
|
|
truthConfig->insert(Point3Key(1), landmark);
|
|
|
|
// create graph
|
|
shared_ptr<VGraph> graph(new VGraph());
|
|
|
|
// create equality constraints for poses
|
|
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(1), camera1.pose())));
|
|
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(2), camera2.pose())));
|
|
|
|
// create VSLAM factors
|
|
Point2 z1 = camera1.project(landmark);
|
|
if (verbose) z1.print("z1");
|
|
SharedDiagonal vmodel = noiseModel::Unit::Create(3);
|
|
//ProjectionFactor test_vf(z1, vmodel, Pose3Key(1), Point3Key(1), shK);
|
|
shared_vf vf1(new GenericProjectionFactor<VConfig>(
|
|
z1, vmodel, Pose3Key(1), Point3Key(1), shK));
|
|
graph->push_back(vf1);
|
|
Point2 z2 = camera2.project(landmark);
|
|
if (verbose) z2.print("z2");
|
|
shared_vf vf2(new GenericProjectionFactor<VConfig>(
|
|
z2, vmodel, Pose3Key(2), Point3Key(1), shK));
|
|
graph->push_back(vf2);
|
|
|
|
if (verbose) graph->print("Graph after construction");
|
|
|
|
// create ordering
|
|
shared_ptr<Ordering> ord(new Ordering());
|
|
*ord += "x1", "x2", "l1";
|
|
|
|
// create optimizer
|
|
VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
|
|
VOptimizer optimizer(graph, truthConfig, solver);
|
|
|
|
// optimize
|
|
VOptimizer afterOneIteration = optimizer.iterate();
|
|
|
|
// verify
|
|
DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);
|
|
|
|
// check if correct
|
|
if (verbose) afterOneIteration.config()->print("After iteration");
|
|
CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
|
|
}
|
|
|
|
|
|
/* *********************************************************************
|
|
* Ground truth for a visual SLAM example with stereo vision
|
|
* with some noise injected into the initial config
|
|
*/
|
|
TEST (SQP, stereo_truth_noisy ) {
|
|
bool verbose = false;
|
|
|
|
// setting to determine how far away the noisy landmark is,
|
|
// given that the ground truth is 5m in front of the cameras
|
|
double noisyDist = 7.6;
|
|
|
|
// create initial estimates
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
SimpleCamera camera1(K, pose1);
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
SimpleCamera camera2(K, pose2);
|
|
Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmarkNoisy(1.0, noisyDist, 0.0); // initial point is too far out
|
|
|
|
// create truth config
|
|
boost::shared_ptr<VConfig> truthConfig(new VConfig);
|
|
truthConfig->insert(Pose3Key(1), camera1.pose());
|
|
truthConfig->insert(Pose3Key(2), camera2.pose());
|
|
truthConfig->insert(Point3Key(1), landmark);
|
|
|
|
// create config
|
|
boost::shared_ptr<VConfig> noisyConfig(new VConfig);
|
|
noisyConfig->insert(Pose3Key(1), camera1.pose());
|
|
noisyConfig->insert(Pose3Key(2), camera2.pose());
|
|
noisyConfig->insert(Point3Key(1), landmarkNoisy);
|
|
|
|
// create graph
|
|
shared_ptr<VGraph> graph(new VGraph());
|
|
|
|
// create equality constraints for poses
|
|
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(1), camera1.pose())));
|
|
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(2), camera2.pose())));
|
|
|
|
// create VSLAM factors
|
|
Point2 z1 = camera1.project(landmark);
|
|
if (verbose) z1.print("z1");
|
|
SharedDiagonal vmodel = noiseModel::Unit::Create(3);
|
|
shared_vf vf1(new GenericProjectionFactor<VConfig>(
|
|
z1, vmodel, Pose3Key(1), Point3Key(1), shK));
|
|
graph->push_back(vf1);
|
|
Point2 z2 = camera2.project(landmark);
|
|
if (verbose) z2.print("z2");
|
|
shared_vf vf2(new GenericProjectionFactor<VConfig>(
|
|
z2, vmodel, Pose3Key(2), Point3Key(1), shK));
|
|
graph->push_back(vf2);
|
|
|
|
if (verbose) {
|
|
graph->print("Graph after construction");
|
|
noisyConfig->print("Initial config");
|
|
}
|
|
|
|
// create ordering
|
|
shared_ptr<Ordering> ord(new Ordering());
|
|
*ord += "x1", "x2", "l1";
|
|
|
|
// create optimizer
|
|
VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
|
|
VOptimizer optimizer0(graph, noisyConfig, solver);
|
|
|
|
if (verbose)
|
|
cout << "Initial Error: " << optimizer0.error() << endl;
|
|
|
|
// use Levenberg-Marquardt optimization
|
|
double relThresh = 1e-5, absThresh = 1e-5;
|
|
VOptimizer optimizer(optimizer0.levenbergMarquardt(relThresh, absThresh, VOptimizer::SILENT));
|
|
|
|
// verify
|
|
DOUBLES_EQUAL(0.0, optimizer.error(), 1e-5);
|
|
|
|
// check if correct
|
|
if (verbose) {
|
|
optimizer.config()->print("After iteration");
|
|
cout << "Final error: " << optimizer.error() << endl;
|
|
}
|
|
CHECK(assert_equal(*truthConfig,*(optimizer.config()), 1e-5));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
namespace sqp_stereo {
|
|
|
|
// binary constraint between landmarks
|
|
/** g(x) = x-y = 0 */
|
|
Vector g(const VConfig& config, const list<Point3Key>& keys) {
|
|
return config[keys.front()].vector()
|
|
- config[keys.back()].vector();
|
|
}
|
|
|
|
/** jacobian at l1 */
|
|
Matrix G1(const VConfig& config, const list<Point3Key>& keys) {
|
|
return eye(3);
|
|
}
|
|
|
|
/** jacobian at l2 */
|
|
Matrix G2(const VConfig& config, const list<Point3Key>& keys) {
|
|
return -1.0 * eye(3);
|
|
}
|
|
|
|
} // \namespace sqp_stereo
|
|
|
|
/* ********************************************************************* */
|
|
boost::shared_ptr<VGraph> stereoExampleGraph() {
|
|
// create initial estimates
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
SimpleCamera camera1(K, pose1);
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
SimpleCamera camera2(K, pose2);
|
|
Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmark2(1.0, 5.0, 0.0);
|
|
|
|
// create graph
|
|
shared_ptr<VGraph> graph(new VGraph);
|
|
|
|
// create equality constraints for poses
|
|
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(1), camera1.pose())));
|
|
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(2), camera2.pose())));
|
|
|
|
// create factors
|
|
Point2 z1 = camera1.project(landmark1);
|
|
SharedDiagonal vmodel = noiseModel::Unit::Create(3);
|
|
shared_vf vf1(new GenericProjectionFactor<VConfig>(
|
|
z1, vmodel, Pose3Key(1), Point3Key(1), shK));
|
|
graph->push_back(vf1);
|
|
Point2 z2 = camera2.project(landmark2);
|
|
shared_vf vf2(new GenericProjectionFactor<VConfig>(
|
|
z2, vmodel, Pose3Key(2), Point3Key(2), shK));
|
|
graph->push_back(vf2);
|
|
|
|
// create the binary equality constraint between the landmarks
|
|
// NOTE: this is really just a linear constraint that is exactly the same
|
|
// as the previous examples
|
|
visualSLAM::PointKey l1(1), l2(2);
|
|
list<Point3Key> keys; keys += l1, l2;
|
|
LagrangeKey L12(12);
|
|
shared_ptr<VNLC2> c2(
|
|
new VNLC2(boost::bind(sqp_stereo::g, _1, keys),
|
|
l1, boost::bind(sqp_stereo::G1, _1, keys),
|
|
l2, boost::bind(sqp_stereo::G2, _1, keys),
|
|
3, L12));
|
|
graph->push_back(c2);
|
|
|
|
return graph;
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
boost::shared_ptr<VConfig> stereoExampleTruthConfig() {
|
|
// create initial estimates
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
SimpleCamera camera1(K, pose1);
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
SimpleCamera camera2(K, pose2);
|
|
Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmark2(1.0, 5.0, 0.0);
|
|
|
|
// create config
|
|
boost::shared_ptr<VConfig> truthConfig(new VConfig);
|
|
truthConfig->insert(Pose3Key(1), camera1.pose());
|
|
truthConfig->insert(Pose3Key(2), camera2.pose());
|
|
truthConfig->insert(Point3Key(1), landmark1);
|
|
truthConfig->insert(Point3Key(2), landmark2); // create two landmarks in same place
|
|
//truthConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0));
|
|
|
|
return truthConfig;
|
|
}
|
|
|
|
/* *********************************************************************
|
|
* SQP version of the above stereo example,
|
|
* with the initial case as the ground truth
|
|
*/
|
|
TEST (SQP, stereo_sqp ) {
|
|
bool verbose = false;
|
|
|
|
// get a graph
|
|
boost::shared_ptr<VGraph> graph = stereoExampleGraph();
|
|
if (verbose) graph->print("Graph after construction");
|
|
|
|
// get the truth config
|
|
boost::shared_ptr<VConfig> truthConfig = stereoExampleTruthConfig();
|
|
truthConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0));
|
|
|
|
// create ordering
|
|
shared_ptr<Ordering> ord(new Ordering());
|
|
*ord += "x1", "x2", "l1", "l2", "L12";
|
|
VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
|
|
|
|
// create optimizer
|
|
VOptimizer optimizer(graph, truthConfig, solver);
|
|
|
|
// optimize
|
|
VOptimizer afterOneIteration = optimizer.iterate();
|
|
|
|
// check if correct
|
|
CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
|
|
}
|
|
|
|
/* *********************************************************************
|
|
* SQP version of the above stereo example,
|
|
* with noise in the initial estimate
|
|
*/
|
|
TEST (SQP, stereo_sqp_noisy ) {
|
|
|
|
// get a graph
|
|
boost::shared_ptr<VGraph> graph = stereoExampleGraph();
|
|
|
|
// create initial data
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
Point3 landmark1(0.5, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmark2(1.5, 5.0, 0.0);
|
|
|
|
// noisy config
|
|
boost::shared_ptr<VConfig> initConfig(new VConfig);
|
|
initConfig->insert(Pose3Key(1), pose1);
|
|
initConfig->insert(Pose3Key(2), pose2);
|
|
initConfig->insert(Point3Key(1), landmark1);
|
|
initConfig->insert(Point3Key(2), landmark2); // create two landmarks in same place
|
|
initConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0));
|
|
|
|
// create ordering
|
|
shared_ptr<Ordering> ord(new Ordering());
|
|
*ord += "x1", "x2", "l1", "l2", "L12";
|
|
VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
|
|
|
|
// create optimizer
|
|
VOptimizer optimizer(graph, initConfig, solver);
|
|
|
|
// optimize
|
|
VOptimizer *pointer = new VOptimizer(optimizer);
|
|
for (int i=0;i<1;i++) {
|
|
VOptimizer* newOptimizer = new VOptimizer(pointer->iterateLM());
|
|
delete pointer;
|
|
pointer = newOptimizer;
|
|
}
|
|
VOptimizer::shared_config actual = pointer->config();
|
|
delete(pointer);
|
|
|
|
// get the truth config
|
|
boost::shared_ptr<VConfig> truthConfig = stereoExampleTruthConfig();
|
|
truthConfig->insert(LagrangeKey(12), Vector_(3, 0.0, 1.0, 1.0));
|
|
|
|
// check if correct
|
|
CHECK(assert_equal(*truthConfig,*actual, 1e-5));
|
|
}
|
|
|
|
static SharedGaussian sigma(noiseModel::Isotropic::Sigma(1,0.1));
|
|
|
|
// typedefs
|
|
//typedef simulated2D::Config Config2D;
|
|
//typedef boost::shared_ptr<Config2D> shared_config;
|
|
//typedef NonlinearFactorGraph<Config2D> NLGraph;
|
|
//typedef boost::shared_ptr<NonlinearFactor<Config2D> > shared;
|
|
|
|
namespace map_warp_example {
|
|
typedef NonlinearConstraint1<
|
|
Config2D, simulated2D::PoseKey, Point2> NLC1;
|
|
//typedef NonlinearConstraint2<
|
|
// Config2D, simulated2D::PointKey, Point2, simulated2D::PointKey, Point2> NLC2;
|
|
} // \namespace map_warp_example
|
|
|
|
/* ********************************************************************* */
|
|
// Example that moves two separate maps into the same frame of reference
|
|
// Note that this is a linear example, so it should converge in one step
|
|
/* ********************************************************************* */
|
|
|
|
namespace sqp_LinearMapWarp2 {
|
|
// binary constraint between landmarks
|
|
/** g(x) = x-y = 0 */
|
|
Vector g_func(const Config2D& config, const simulated2D::PointKey& key1, const simulated2D::PointKey& key2) {
|
|
Point2 p = config[key1]-config[key2];
|
|
return Vector_(2, p.x(), p.y());
|
|
}
|
|
|
|
/** jacobian at l1 */
|
|
Matrix jac_g1(const Config2D& config) {
|
|
return eye(2);
|
|
}
|
|
|
|
/** jacobian at l2 */
|
|
Matrix jac_g2(const Config2D& config) {
|
|
return -1*eye(2);
|
|
}
|
|
} // \namespace sqp_LinearMapWarp2
|
|
|
|
namespace sqp_LinearMapWarp1 {
|
|
// Unary Constraint on x1
|
|
/** g(x) = x -[1;1] = 0 */
|
|
Vector g_func(const Config2D& config, const simulated2D::PoseKey& key) {
|
|
Point2 p = config[key]-Point2(1.0, 1.0);
|
|
return Vector_(2, p.x(), p.y());
|
|
}
|
|
|
|
/** jacobian at x1 */
|
|
Matrix jac_g(const Config2D& config) {
|
|
return eye(2);
|
|
}
|
|
} // \namespace sqp_LinearMapWarp12
|
|
|
|
//typedef NonlinearOptimizer<NLGraph, Config2D> Optimizer;
|
|
|
|
/**
|
|
* Creates the graph with each robot seeing the landmark, and it is
|
|
* known that it is the same landmark
|
|
*/
|
|
boost::shared_ptr<Graph2D> linearMapWarpGraph() {
|
|
using namespace map_warp_example;
|
|
// keys
|
|
simulated2D::PoseKey x1(1), x2(2);
|
|
simulated2D::PointKey l1(1), l2(2);
|
|
|
|
// constant constraint on x1
|
|
LagrangeKey L1(1);
|
|
shared_ptr<NLC1> c1(new NLC1(boost::bind(sqp_LinearMapWarp1::g_func, _1, x1),
|
|
x1, boost::bind(sqp_LinearMapWarp1::jac_g, _1),
|
|
2, L1));
|
|
|
|
// measurement from x1 to l1
|
|
Point2 z1(0.0, 5.0);
|
|
shared f1(new simulated2D::GenericMeasurement<Config2D>(z1, sigma, x1,l1));
|
|
|
|
// measurement from x2 to l2
|
|
Point2 z2(-4.0, 0.0);
|
|
shared f2(new simulated2D::GenericMeasurement<Config2D>(z2, sigma, x2,l2));
|
|
|
|
// equality constraint between l1 and l2
|
|
LagrangeKey L12(12);
|
|
shared_ptr<NLC2> c2 (new NLC2(
|
|
boost::bind(sqp_LinearMapWarp2::g_func, _1, l1, l2),
|
|
l1, boost::bind(sqp_LinearMapWarp2::jac_g1, _1),
|
|
l2, boost::bind(sqp_LinearMapWarp2::jac_g2, _1),
|
|
2, L12));
|
|
|
|
// construct the graph
|
|
boost::shared_ptr<Graph2D> graph(new Graph2D());
|
|
graph->push_back(c1);
|
|
graph->push_back(c2);
|
|
graph->push_back(f1);
|
|
graph->push_back(f2);
|
|
|
|
return graph;
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
TEST ( SQPOptimizer, map_warp_initLam ) {
|
|
// get a graph
|
|
boost::shared_ptr<Graph2D> graph = linearMapWarpGraph();
|
|
|
|
// keys
|
|
simulated2D::PoseKey x1(1), x2(2);
|
|
simulated2D::PointKey l1(1), l2(2);
|
|
LagrangeKey L1(1), L12(12);
|
|
|
|
// create an initial estimate
|
|
shared_ptr<Config2D> initialEstimate(new Config2D);
|
|
initialEstimate->insert(x1, Point2(1.0, 1.0));
|
|
initialEstimate->insert(l1, Point2(1.0, 6.0));
|
|
initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
|
|
initialEstimate->insert(x2, Point2(0.0, 0.0)); // other pose starts at origin
|
|
initialEstimate->insert(L12, Vector_(2, 1.0, 1.0));
|
|
initialEstimate->insert(L1, Vector_(2, 1.0, 1.0));
|
|
|
|
// create an ordering
|
|
shared_ptr<Ordering> ordering(new Ordering());
|
|
*ordering += "x1", "x2", "l1", "l2", "L12", "L1";
|
|
|
|
// create an optimizer
|
|
Optimizer::shared_solver solver(new Optimizer::solver(ordering));
|
|
Optimizer optimizer(graph, initialEstimate, solver);
|
|
|
|
// perform an iteration of optimization
|
|
Optimizer oneIteration = optimizer.iterate(Optimizer::SILENT);
|
|
|
|
// get the config back out and verify
|
|
Config2D actual = *(oneIteration.config());
|
|
Config2D expected;
|
|
expected.insert(x1, Point2(1.0, 1.0));
|
|
expected.insert(l1, Point2(1.0, 6.0));
|
|
expected.insert(l2, Point2(1.0, 6.0));
|
|
expected.insert(x2, Point2(5.0, 6.0));
|
|
expected.insert(L1, Vector_(2, 1.0, 1.0));
|
|
expected.insert(L12, Vector_(2, 6.0, 7.0));
|
|
CHECK(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
// This is an obstacle avoidance demo, where there is a trajectory of
|
|
// three points, where there is a circular obstacle in the middle. There
|
|
// is a binary inequality constraint connecting the obstacle to the
|
|
// states, which enforces a minimum distance.
|
|
/* ********************************************************************* */
|
|
|
|
//typedef NonlinearConstraint2<Config2D, PoseKey, Point2, PointKey, Point2> AvoidConstraint;
|
|
//typedef shared_ptr<AvoidConstraint> shared_a;
|
|
//typedef NonlinearEquality<Config2D, simulated2D::PoseKey, Point2> PoseNLConstraint;
|
|
//typedef shared_ptr<PoseNLConstraint> shared_pc;
|
|
//typedef NonlinearEquality<Config2D, simulated2D::PointKey, Point2> ObstacleConstraint;
|
|
//typedef shared_ptr<ObstacleConstraint> shared_oc;
|
|
//
|
|
//
|
|
//namespace sqp_avoid1 {
|
|
//// avoidance radius
|
|
//double radius = 1.0;
|
|
//
|
|
//// binary avoidance constraint
|
|
///** g(x) = ||x2-obs||^2 - radius^2 > 0 */
|
|
//Vector g_func(const Config2D& config, const PoseKey& x, const PointKey& obs) {
|
|
// double dist2 = config[x].dist(config[obs]);
|
|
// double thresh = radius*radius;
|
|
// return Vector_(1, dist2-thresh);
|
|
//}
|
|
//
|
|
///** jacobian at pose */
|
|
//Matrix jac_g1(const Config2D& config, const PoseKey& x, const PointKey& obs) {
|
|
// Point2 p = config[x]-config[obs];
|
|
// return Matrix_(1,2, 2.0*p.x(), 2.0*p.y());
|
|
//}
|
|
//
|
|
///** jacobian at obstacle */
|
|
//Matrix jac_g2(const Config2D& config, const PoseKey& x, const PointKey& obs) {
|
|
// Point2 p = config[x]-config[obs];
|
|
// return Matrix_(1,2, -2.0*p.x(), -2.0*p.y());
|
|
//}
|
|
//}
|
|
//
|
|
//pair<NLGraph, Config2D> obstacleAvoidGraph() {
|
|
// // Keys
|
|
// PoseKey x1(1), x2(2), x3(3);
|
|
// PointKey l1(1);
|
|
// LagrangeKey L20(20);
|
|
//
|
|
// // Constrained Points
|
|
// Point2 pt_x1,
|
|
// pt_x3(10.0, 0.0),
|
|
// pt_l1(5.0, -0.5);
|
|
//
|
|
// shared_pc e1(new PoseNLConstraint(x1, pt_x1));
|
|
// shared_pc e2(new PoseNLConstraint(x3, pt_x3));
|
|
// shared_oc e3(new ObstacleConstraint(l1, pt_l1));
|
|
//
|
|
// // measurement from x1 to x2
|
|
// Point2 x1x2(5.0, 0.0);
|
|
// shared f1(new simulated2D::Odometry(x1x2, sigma, 1,2));
|
|
//
|
|
// // measurement from x2 to x3
|
|
// Point2 x2x3(5.0, 0.0);
|
|
// shared f2(new simulated2D::Odometry(x2x3, sigma, 2,3));
|
|
//
|
|
// // create a binary inequality constraint that forces the middle point away from
|
|
// // the obstacle
|
|
// shared_a c1(new AvoidConstraint(boost::bind(sqp_avoid1::g_func, _1, x2, l1),
|
|
// x2, boost::bind(sqp_avoid1::jac_g1, _1, x2, l1),
|
|
// l1,boost::bind(sqp_avoid1::jac_g2, _1, x2, l1),
|
|
// 1, L20, false));
|
|
//
|
|
// // construct the graph
|
|
// NLGraph graph;
|
|
// graph.push_back(e1);
|
|
// graph.push_back(e2);
|
|
// graph.push_back(e3);
|
|
// graph.push_back(c1);
|
|
// graph.push_back(f1);
|
|
// graph.push_back(f2);
|
|
//
|
|
// // make a config of the fixed values, for convenience
|
|
// Config2D config;
|
|
// config.insert(x1, pt_x1);
|
|
// config.insert(x3, pt_x3);
|
|
// config.insert(l1, pt_l1);
|
|
//
|
|
// return make_pair(graph, config);
|
|
//}
|
|
//
|
|
///* ********************************************************************* */
|
|
//TEST ( SQPOptimizer, inequality_avoid ) {
|
|
// // create the graph
|
|
// NLGraph graph; Config2D feasible;
|
|
// boost::tie(graph, feasible) = obstacleAvoidGraph();
|
|
//
|
|
// // create the rest of the config
|
|
// shared_ptr<Config2D> init(new Config2D(feasible));
|
|
// PoseKey x2(2);
|
|
// init->insert(x2, Point2(5.0, 100.0));
|
|
//
|
|
// // create an ordering
|
|
// Ordering ord;
|
|
// ord += "x1", "x2", "x3", "l1";
|
|
//
|
|
// // create an optimizer
|
|
// Optimizer optimizer(graph, ord, init);
|
|
//
|
|
// // perform an iteration of optimization
|
|
// // NOTE: the constraint will be inactive in the first iteration,
|
|
// // so it will violate the constraint after one iteration
|
|
// Optimizer afterOneIteration = optimizer.iterate(Optimizer::SILENT);
|
|
//
|
|
// Config2D exp1(feasible);
|
|
// exp1.insert(x2, Point2(5.0, 0.0));
|
|
// CHECK(assert_equal(exp1, *(afterOneIteration.config())));
|
|
//
|
|
// // the second iteration will activate the constraint and force the
|
|
// // config to a viable configuration.
|
|
// Optimizer after2ndIteration = afterOneIteration.iterate(Optimizer::SILENT);
|
|
//
|
|
// Config2D exp2(feasible);
|
|
// exp2.insert(x2, Point2(5.0, 0.5));
|
|
// CHECK(assert_equal(exp2, *(after2ndIteration.config())));
|
|
//}
|
|
|
|
///* ********************************************************************* */
|
|
//TEST ( SQPOptimizer, inequality_avoid_iterative ) {
|
|
// // create the graph
|
|
// NLGraph graph; Config2D feasible;
|
|
// boost::tie(graph, feasible) = obstacleAvoidGraph();
|
|
//
|
|
// // create the rest of the config
|
|
// shared_ptr<Config2D> init(new Config2D(feasible));
|
|
// PoseKey x2(2);
|
|
// init->insert(x2, Point2(5.0, 100.0));
|
|
//
|
|
// // create an ordering
|
|
// Ordering ord;
|
|
// ord += "x1", "x2", "x3", "l1";
|
|
//
|
|
// // create an optimizer
|
|
// Optimizer optimizer(graph, ord, init);
|
|
//
|
|
// double relThresh = 1e-5; // minimum change in error between iterations
|
|
// double absThresh = 1e-5; // minimum error necessary to converge
|
|
// double constraintThresh = 1e-9; // minimum constraint error to be feasible
|
|
// Optimizer final = optimizer.iterateSolve(relThresh, absThresh, constraintThresh);
|
|
//
|
|
// // verify
|
|
// Config2D exp2(feasible);
|
|
// exp2.insert(x2, Point2(5.0, 0.5));
|
|
// CHECK(assert_equal(exp2, *(final.config())));
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|