gtsam/gtsam_unstable/nonlinear/tests/testAdaptAutoDiff.cpp

479 lines
15 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------1------------------------------------------- */
/**
* @file testExpression.cpp
* @date September 18, 2014
* @author Frank Dellaert
* @author Paul Furgale
* @brief unit tests for Block Automatic Differentiation
*/
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/Cal3Bundler.h>
#include <gtsam_unstable/nonlinear/Expression.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/LieScalar.h>
#include <gtsam_unstable/nonlinear/ceres_autodiff.h>
#include <gtsam_unstable/nonlinear/ceres_rotation.h>
#undef CHECK
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/list_of.hpp>
using boost::assign::list_of;
using boost::assign::map_list_of;
using namespace std;
using namespace gtsam;
// The DefaultChart of Camera below is laid out like Snavely's 9-dim vector
typedef PinholeCamera<Cal3Bundler> Camera;
/* ************************************************************************* */
// Some Ceres Snippets copied for testing
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
template<typename T> inline T &RowMajorAccess(T *base, int rows, int cols,
int i, int j) {
return base[cols * i + j];
}
inline double RandDouble() {
double r = static_cast<double>(rand());
return r / RAND_MAX;
}
// A structure for projecting a 3x4 camera matrix and a
// homogeneous 3D point, to a 2D inhomogeneous point.
struct Projective {
// Function that takes P and X as separate vectors:
// P, X -> x
template<typename A>
bool operator()(A const P[12], A const X[4], A x[2]) const {
A PX[3];
for (int i = 0; i < 3; ++i) {
PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0]
+ RowMajorAccess(P, 3, 4, i, 1) * X[1]
+ RowMajorAccess(P, 3, 4, i, 2) * X[2]
+ RowMajorAccess(P, 3, 4, i, 3) * X[3];
}
if (PX[2] != 0.0) {
x[0] = PX[0] / PX[2];
x[1] = PX[1] / PX[2];
return true;
}
return false;
}
// Adapt to eigen types
Vector2 operator()(const MatrixRowMajor& P, const Vector4& X) const {
Vector2 x;
if (operator()(P.data(), X.data(), x.data()))
return x;
else
throw std::runtime_error("Projective fail");
}
};
// Templated pinhole camera model for used with Ceres. The camera is
// parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for
// focal length and 2 for radial distortion. The principal point is not modeled
// (i.e. it is assumed be located at the image center).
struct SnavelyProjection {
template<typename T>
bool operator()(const T* const camera, const T* const point,
T* predicted) const {
// camera[0,1,2] are the angle-axis rotation.
T p[3];
ceres::AngleAxisRotatePoint(camera, point, p);
// camera[3,4,5] are the translation.
p[0] += camera[3];
p[1] += camera[4];
p[2] += camera[5];
// Compute the center of distortion. The sign change comes from
// the camera model that Noah Snavely's Bundler assumes, whereby
// the camera coordinate system has a negative z axis.
T xp = -p[0] / p[2];
T yp = -p[1] / p[2];
// Apply second and fourth order radial distortion.
const T& l1 = camera[7];
const T& l2 = camera[8];
T r2 = xp * xp + yp * yp;
T distortion = T(1.0) + r2 * (l1 + l2 * r2);
// Compute final projected point position.
const T& focal = camera[6];
predicted[0] = focal * distortion * xp;
predicted[1] = focal * distortion * yp;
return true;
}
// Adapt to GTSAM types
Vector2 operator()(const Vector9& P, const Vector3& X) const {
Vector2 x;
if (operator()(P.data(), X.data(), x.data()))
return x;
else
throw std::runtime_error("Snavely fail");
}
};
/* ************************************************************************* */
// is_manifold
TEST(Manifold, _is_manifold) {
using namespace traits;
EXPECT(!is_manifold<int>::value);
EXPECT(is_manifold<Point2>::value);
EXPECT(is_manifold<Matrix24>::value);
EXPECT(is_manifold<double>::value);
EXPECT(is_manifold<Vector>::value);
EXPECT(is_manifold<Matrix>::value);
}
/* ************************************************************************* */
// dimension
TEST(Manifold, _dimension) {
using namespace traits;
EXPECT_LONGS_EQUAL(2, dimension<Point2>::value);
EXPECT_LONGS_EQUAL(8, dimension<Matrix24>::value);
EXPECT_LONGS_EQUAL(1, dimension<double>::value);
EXPECT_LONGS_EQUAL(Eigen::Dynamic, dimension<Vector>::value);
EXPECT_LONGS_EQUAL(Eigen::Dynamic, dimension<Matrix>::value);
}
/* ************************************************************************* */
// charts
TEST(Manifold, DefaultChart) {
DefaultChart<Point2> chart1(Point2(0, 0));
EXPECT(chart1.apply(Point2(1,0))==Vector2(1,0));
EXPECT(chart1.retract(Vector2(1,0))==Point2(1,0));
DefaultChart<Vector2> chart2(Vector2(0, 0));
EXPECT(chart2.apply(Vector2(1,0))==Vector2(1,0));
EXPECT(chart2.retract(Vector2(1,0))==Vector2(1,0));
DefaultChart<double> chart3(0);
Eigen::Matrix<double, 1, 1> v1;
v1 << 1;
EXPECT(chart3.apply(1)==v1);
EXPECT(chart3.retract(v1)==1);
// Dynamic does not work yet !
// Vector z = zero(2), v(2);
// v << 1, 0;
// DefaultChart<Vector> chart4(z);
// EXPECT(chart4.apply(v)==v);
// EXPECT(chart4.retract(v)==v);
}
/* ************************************************************************* */
// zero
TEST(Manifold, _zero) {
EXPECT(assert_equal(Pose3(),traits::zero<Pose3>::value()));
Cal3Bundler cal(0,0,0);
EXPECT(assert_equal(cal,traits::zero<Cal3Bundler>::value()));
EXPECT(assert_equal(Camera(Pose3(),cal),traits::zero<Camera>::value()));
}
/* ************************************************************************* */
// charts
TEST(Manifold, Canonical) {
Canonical<Point2> chart1;
EXPECT(chart1.apply(Point2(1,0))==Vector2(1,0));
EXPECT(chart1.retract(Vector2(1,0))==Point2(1,0));
Canonical<Vector2> chart2;
EXPECT(assert_equal((Vector)chart2.apply(Vector2(1,0)),Vector2(1,0)));
EXPECT(chart2.retract(Vector2(1,0))==Vector2(1,0));
Canonical<double> chart3;
Eigen::Matrix<double, 1, 1> v1;
v1 << 1;
EXPECT(chart3.apply(1)==v1);
EXPECT(chart3.retract(v1)==1);
Canonical<Point3> chart4;
Point3 point(1,2,3);
Vector3 v3(1,2,3);
EXPECT(assert_equal((Vector)chart4.apply(point),v3));
EXPECT(assert_equal(chart4.retract(v3),point));
Canonical<Pose3> chart5;
Pose3 pose(Rot3::identity(),point);
Vector6 v6; v6 << 0,0,0,1,2,3;
EXPECT(assert_equal((Vector)chart5.apply(pose),v6));
EXPECT(assert_equal(chart5.retract(v6),pose));
Canonical<Camera> chart6;
Cal3Bundler cal0(0,0,0);
Camera camera(Pose3(),cal0);
Vector9 z9 = Vector9::Zero();
EXPECT(assert_equal((Vector)chart6.apply(camera),z9));
EXPECT(assert_equal(chart6.retract(z9),camera));
Cal3Bundler cal; // Note !! Cal3Bundler() != zero<Cal3Bundler>::value()
Camera camera2(pose,cal);
Vector9 v9; v9 << 0,0,0,1,2,3,1,0,0;
EXPECT(assert_equal((Vector)chart6.apply(camera2),v9));
EXPECT(assert_equal(chart6.retract(v9),camera2));
}
/* ************************************************************************* */
// New-style numerical derivatives using manifold_traits
template<typename Y, typename X>
Matrix numericalDerivative(boost::function<Y(const X&)> h, const X& x,
double delta = 1e-5) {
using namespace traits;
BOOST_STATIC_ASSERT(is_manifold<Y>::value);
static const size_t M = dimension<Y>::value;
typedef DefaultChart<Y> ChartY;
typedef typename ChartY::vector TangentY;
BOOST_STATIC_ASSERT(is_manifold<X>::value);
static const size_t N = dimension<X>::value;
typedef DefaultChart<X> ChartX;
typedef typename ChartX::vector TangentX;
// get chart at x
ChartX chartX(x);
// get value at x, and corresponding chart
Y hx = h(x);
ChartY chartY(hx);
// Prepare a tangent vector to perturb x with
TangentX dx;
dx.setZero();
// Fill in Jacobian H
Matrix H = zeros(M, N);
double factor = 1.0 / (2.0 * delta);
for (size_t j = 0; j < N; j++) {
dx(j) = delta;
TangentY dy1 = chartY.apply(h(chartX.retract(dx)));
dx(j) = -delta;
TangentY dy2 = chartY.apply(h(chartX.retract(dx)));
H.block<M, 1>(0, j) << (dy1 - dy2) * factor;
dx(j) = 0;
}
return H;
}
template<typename Y, typename X1, typename X2>
Matrix numericalDerivative21(boost::function<Y(const X1&, const X2&)> h,
const X1& x1, const X2& x2, double delta = 1e-5) {
return numericalDerivative<Y, X1>(boost::bind(h, _1, x2), x1, delta);
}
template<typename Y, typename X1, typename X2>
Matrix numericalDerivative22(boost::function<Y(const X1&, const X2&)> h,
const X1& x1, const X2& x2, double delta = 1e-5) {
return numericalDerivative<Y, X2>(boost::bind(h, x1, _1), x2, delta);
}
/* ************************************************************************* */
// Test Ceres AutoDiff
TEST(Expression, AutoDiff) {
using ceres::internal::AutoDiff;
// Instantiate function
Projective projective;
// Make arguments
typedef Eigen::Matrix<double, 3, 4, Eigen::RowMajor> M;
M P;
P << 1, 0, 0, 0, 0, 1, 0, 5, 0, 0, 1, 0;
Vector4 X(10, 0, 5, 1);
// Apply the mapping, to get image point b_x.
Vector expected = Vector2(2, 1);
Vector2 actual = projective(P, X);
EXPECT(assert_equal(expected,actual,1e-9));
// Get expected derivatives
Matrix E1 = numericalDerivative21<Vector2, M, Vector4>(Projective(), P, X);
Matrix E2 = numericalDerivative22<Vector2, M, Vector4>(Projective(), P, X);
// Get derivatives with AutoDiff
Vector2 actual2;
MatrixRowMajor H1(2, 12), H2(2, 4);
double *parameters[] = { P.data(), X.data() };
double *jacobians[] = { H1.data(), H2.data() };
CHECK(
(AutoDiff<Projective, double, 12, 4>::Differentiate( projective, parameters, 2, actual2.data(), jacobians)));
EXPECT(assert_equal(E1,H1,1e-8));
EXPECT(assert_equal(E2,H2,1e-8));
}
/* ************************************************************************* */
// Test Ceres AutoDiff on Snavely
TEST(Expression, AutoDiff2) {
using ceres::internal::AutoDiff;
// Instantiate function
SnavelyProjection snavely;
// Make arguments
Vector9 P; // zero rotation, (0,5,0) translation, focal length 1
P << 0, 0, 0, 0, 5, 0, 1, 0, 0;
Vector3 X(10, 0, -5); // negative Z-axis convention of Snavely!
// Apply the mapping, to get image point b_x.
Vector expected = Vector2(2, 1);
Vector2 actual = snavely(P, X);
EXPECT(assert_equal(expected,actual,1e-9));
// Get expected derivatives
Matrix E1 = numericalDerivative21<Vector2, Vector9, Vector3>(
SnavelyProjection(), P, X);
Matrix E2 = numericalDerivative22<Vector2, Vector9, Vector3>(
SnavelyProjection(), P, X);
// Get derivatives with AutoDiff
Vector2 actual2;
MatrixRowMajor H1(2, 9), H2(2, 3);
double *parameters[] = { P.data(), X.data() };
double *jacobians[] = { H1.data(), H2.data() };
CHECK(
(AutoDiff<SnavelyProjection, double, 9, 3>::Differentiate( snavely, parameters, 2, actual2.data(), jacobians)));
EXPECT(assert_equal(E1,H1,1e-8));
EXPECT(assert_equal(E2,H2,1e-8));
}
/* ************************************************************************* */
// Adapt ceres-style autodiff
template<typename F, typename T, typename A1, typename A2>
class AdaptAutoDiff {
static const int N = traits::dimension<T>::value;
static const int M1 = traits::dimension<A1>::value;
static const int M2 = traits::dimension<A2>::value;
typedef Eigen::Matrix<double, N, M1, Eigen::RowMajor> RowMajor1;
typedef Eigen::Matrix<double, N, M2, Eigen::RowMajor> RowMajor2;
typedef Canonical<T> CanonicalT;
typedef Canonical<A1> Canonical1;
typedef Canonical<A2> Canonical2;
typedef typename CanonicalT::vector VectorT;
typedef typename Canonical1::vector Vector1;
typedef typename Canonical2::vector Vector2;
// Instantiate function and charts
CanonicalT chartT;
Canonical1 chart1;
Canonical2 chart2;
F f;
public:
typedef Eigen::Matrix<double, N, M1> JacobianTA1;
typedef Eigen::Matrix<double, N, M2> JacobianTA2;
T operator()(const A1& a1, const A2& a2, boost::optional<JacobianTA1&> H1 =
boost::none, boost::optional<JacobianTA2&> H2 = boost::none) {
using ceres::internal::AutoDiff;
// Make arguments
Vector1 v1 = chart1.apply(a1);
Vector2 v2 = chart2.apply(a2);
bool success;
VectorT result;
if (H1 || H2) {
// Get derivatives with AutoDiff
double *parameters[] = { v1.data(), v2.data() };
double rowMajor1[N * M1], rowMajor2[N * M2]; // om the stack
double *jacobians[] = { rowMajor1, rowMajor2 };
success = AutoDiff<F, double, 9, 3>::Differentiate(f, parameters, 2,
result.data(), jacobians);
// Convert from row-major to columnn-major
// TODO: if this is a bottleneck (probably not!) fix Autodiff to be Column-Major
*H1 = Eigen::Map<RowMajor1>(rowMajor1);
*H2 = Eigen::Map<RowMajor2>(rowMajor2);
} else {
// Apply the mapping, to get result
success = f(v1.data(), v2.data(), result.data());
}
if (!success)
throw std::runtime_error(
"AdaptAutoDiff: function call resulted in failure");
return chartT.retract(result);
}
};
/* ************************************************************************* */
// Test AutoDiff wrapper Snavely
TEST(Expression, AutoDiff3) {
// Make arguments
Camera P(Pose3(Rot3(), Point3(0, 5, 0)), Cal3Bundler(1, 0, 0));
Point3 X(10, 0, -5); // negative Z-axis convention of Snavely!
typedef AdaptAutoDiff<SnavelyProjection, Point2, Camera, Point3> Adaptor;
Adaptor snavely;
// Apply the mapping, to get image point b_x.
Point2 expected(2, 1);
Point2 actual = snavely(P, X);
EXPECT(assert_equal(expected,actual,1e-9));
// // Get expected derivatives
Matrix E1 = numericalDerivative21<Point2, Camera, Point3>(Adaptor(), P, X);
Matrix E2 = numericalDerivative22<Point2, Camera, Point3>(Adaptor(), P, X);
// Get derivatives with AutoDiff, not gives RowMajor results!
Matrix29 H1;
Matrix23 H2;
Point2 actual2 = snavely(P, X, H1, H2);
EXPECT(assert_equal(expected,actual,1e-9));
EXPECT(assert_equal(E1,H1,1e-8));
EXPECT(assert_equal(E2,H2,1e-8));
}
/* ************************************************************************* */
// Test AutoDiff wrapper in an expression
TEST(Expression, Snavely) {
Expression<Camera> P(1);
Expression<Point3> X(2);
typedef AdaptAutoDiff<SnavelyProjection, Point2, Camera, Point3> Adaptor;
Expression<Point2> expression(Adaptor(), P, X);
set<Key> expected = list_of(1)(2);
EXPECT(expected == expression.keys());
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */