95 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			95 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file  DiscreteBayesNetExample.cpp
 | |
|  * @brief   Hidden Markov Model example, discrete.
 | |
|  * @author  Frank Dellaert
 | |
|  * @date  July 12, 2020
 | |
|  */
 | |
| 
 | |
| #include <gtsam/discrete/DiscreteFactorGraph.h>
 | |
| #include <gtsam/discrete/DiscreteMarginals.h>
 | |
| #include <gtsam/inference/BayesNet.h>
 | |
| 
 | |
| #include <iomanip>
 | |
| #include <sstream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| int main(int argc, char **argv) {
 | |
|   const int nrNodes = 4;
 | |
|   const size_t nrStates = 3;
 | |
| 
 | |
|   // Define variables as well as ordering
 | |
|   Ordering ordering;
 | |
|   vector<DiscreteKey> keys;
 | |
|   for (int k = 0; k < nrNodes; k++) {
 | |
|     DiscreteKey key_i(k, nrStates);
 | |
|     keys.push_back(key_i);
 | |
|     ordering.emplace_back(k);
 | |
|   }
 | |
| 
 | |
|   // Create HMM as a DiscreteBayesNet
 | |
|   DiscreteBayesNet hmm;
 | |
| 
 | |
|   // Define backbone
 | |
|   const string transition = "8/1/1 1/8/1 1/1/8";
 | |
|   for (int k = 1; k < nrNodes; k++) {
 | |
|     hmm.add(keys[k] | keys[k - 1] = transition);
 | |
|   }
 | |
| 
 | |
|   // Add some measurements, not needed for all time steps!
 | |
|   hmm.add(keys[0] % "7/2/1");
 | |
|   hmm.add(keys[1] % "1/9/0");
 | |
|   hmm.add(keys.back() % "5/4/1");
 | |
| 
 | |
|   // print
 | |
|   hmm.print("HMM");
 | |
| 
 | |
|   // Convert to factor graph
 | |
|   DiscreteFactorGraph factorGraph(hmm);
 | |
| 
 | |
|   // Do max-prodcut
 | |
|   auto mpe = factorGraph.optimize();
 | |
|   GTSAM_PRINT(mpe);
 | |
| 
 | |
|   // Create solver and eliminate
 | |
|   // This will create a DAG ordered with arrow of time reversed
 | |
|   DiscreteBayesNet::shared_ptr chordal =
 | |
|       factorGraph.eliminateSequential(ordering);
 | |
|   chordal->print("Eliminated");
 | |
| 
 | |
|   // We can also sample from it
 | |
|   cout << "\n10 samples:" << endl;
 | |
|   for (size_t k = 0; k < 10; k++) {
 | |
|     auto sample = chordal->sample();
 | |
|     GTSAM_PRINT(sample);
 | |
|   }
 | |
| 
 | |
|   // Or compute the marginals. This re-eliminates the FG into a Bayes tree
 | |
|   cout << "\nComputing Node Marginals .." << endl;
 | |
|   DiscreteMarginals marginals(factorGraph);
 | |
|   for (int k = 0; k < nrNodes; k++) {
 | |
|     Vector margProbs = marginals.marginalProbabilities(keys[k]);
 | |
|     stringstream ss;
 | |
|     ss << "marginal " << k;
 | |
|     print(margProbs, ss.str());
 | |
|   }
 | |
| 
 | |
|   // TODO(frank): put in the glue to have DiscreteMarginals produce *arbitrary*
 | |
|   // joints efficiently, by the Bayes tree shortcut magic. All the code is there
 | |
|   // but it's not yet connected.
 | |
| 
 | |
|   return 0;
 | |
| }
 |