83 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Matlab
		
	
	
%-----------------------------------------------------------------------
 | 
						|
% eliminate
 | 
						|
 | 
						|
import gtsam.*
 | 
						|
 | 
						|
% the combined linear factor
 | 
						|
Ax2 = [
 | 
						|
-5., 0.
 | 
						|
+0.,-5.
 | 
						|
10., 0.
 | 
						|
+0.,10.
 | 
						|
];
 | 
						|
 | 
						|
Al1 = [
 | 
						|
5., 0.
 | 
						|
0., 5.
 | 
						|
0., 0.
 | 
						|
0., 0.
 | 
						|
];
 | 
						|
 | 
						|
Ax1 = [
 | 
						|
0.00,  0. % f4
 | 
						|
0.00,  0. % f4
 | 
						|
-10.,  0. % f2
 | 
						|
0.00,-10. % f2
 | 
						|
];
 | 
						|
 | 
						|
x2 = 1;
 | 
						|
l1 = 2;
 | 
						|
x1 = 3;
 | 
						|
 | 
						|
% the RHS
 | 
						|
b2=[-1;1.5;2;-1];
 | 
						|
sigmas = [1;1;1;1];
 | 
						|
model4 = noiseModel.Diagonal.Sigmas(sigmas);
 | 
						|
combined = JacobianFactor(x2, Ax2,  l1, Al1, x1, Ax1, b2, model4);
 | 
						|
 | 
						|
% eliminate the first variable (x2) in the combined factor, destructive !
 | 
						|
ord=Ordering;
 | 
						|
ord.push_back(x2);
 | 
						|
actualCG = combined.eliminate(ord);
 | 
						|
 | 
						|
% create expected Conditional Gaussian
 | 
						|
R11 = [
 | 
						|
11.1803,  0.00
 | 
						|
0.00, 11.1803
 | 
						|
];
 | 
						|
S12 = [
 | 
						|
-2.23607, 0.00
 | 
						|
+0.00,-2.23607
 | 
						|
];
 | 
						|
S13 = [
 | 
						|
-8.94427, 0.00
 | 
						|
+0.00,-8.94427
 | 
						|
];
 | 
						|
d=[2.23607;-1.56525];
 | 
						|
unit2 = noiseModel.Unit.Create(2);
 | 
						|
expectedCG = GaussianConditional(x2,d,R11,l1,S12,x1,S13,unit2);
 | 
						|
% check if the result matches
 | 
						|
CHECK('actualCG.equals(expectedCG,1e-5)',actualCG.equals(expectedCG,1e-4));
 | 
						|
 | 
						|
% the expected linear factor
 | 
						|
Bl1 = [
 | 
						|
4.47214, 0.00
 | 
						|
0.00, 4.47214
 | 
						|
];
 | 
						|
 | 
						|
Bx1 = [
 | 
						|
% x1
 | 
						|
-4.47214,  0.00
 | 
						|
+0.00, -4.47214
 | 
						|
];
 | 
						|
 | 
						|
% the RHS
 | 
						|
b1= [0.0;0.894427];
 | 
						|
 | 
						|
model2 = noiseModel.Diagonal.Sigmas([1;1]);
 | 
						|
expectedLF = JacobianFactor(l1, Bl1, x1, Bx1, b1, model2);
 | 
						|
 | 
						|
% check if the result matches the combined (reduced) factor
 | 
						|
% FIXME: JacobianFactor/GaussianFactor mismatch
 | 
						|
%CHECK('combined.equals(expectedLF,1e-5)',combined.equals(expectedLF,1e-4));
 |