gtsam/python/gtsam_examples/PreintegrationExample.py

130 lines
4.7 KiB
Python

"""
A script validating the Preintegration of IMU measurements
"""
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam_utils import plotPose3
IMU_FIG = 1
POSES_FIG = 2
class PreintegrationExample(object):
@staticmethod
def defaultParams(g):
"""Create default parameters with Z *up* and realistic noise parameters"""
params = gtsam.PreintegrationParams.MakeSharedU(g)
kGyroSigma = math.radians(0.5) / 60 # 0.5 degree ARW
kAccelSigma = 0.1 / 60 # 10 cm VRW
params.gyroscopeCovariance = kGyroSigma ** 2 * np.identity(3, np.float)
params.accelerometerCovariance = kAccelSigma ** 2 * np.identity(3, np.float)
params.integrationCovariance = 0.0000001 ** 2 * np.identity(3, np.float)
return params
def __init__(self, twist=None, bias=None, dt=1e-2):
"""Initialize with given twist, a pair(angularVelocityVector, velocityVector)."""
# setup interactive plotting
plt.ion()
# Setup loop as default scenario
if twist is not None:
(W, V) = twist
else:
# default = loop with forward velocity 2m/s, while pitching up
# with angular velocity 30 degree/sec (negative in FLU)
W = np.array([0, -math.radians(30), 0])
V = np.array([2, 0, 0])
self.scenario = gtsam.ConstantTwistScenario(W, V)
self.dt = dt
self.maxDim = 5
self.labels = list('xyz')
self.colors = list('rgb')
# Create runner
self.g = 10 # simple gravity constant
self.params = self.defaultParams(self.g)
ptr = gtsam.ScenarioPointer(self.scenario)
if bias is not None:
self.actualBias = bias
else:
accBias = np.array([0, 0.1, 0])
gyroBias = np.array([0, 0, 0])
self.actualBias = gtsam.ConstantBias(accBias, gyroBias)
self.runner = gtsam.ScenarioRunner(ptr, self.params, self.dt, self.actualBias)
def plotImu(self, t, measuredOmega, measuredAcc):
plt.figure(IMU_FIG)
# plot angular velocity
omega_b = self.scenario.omega_b(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(4, 3, i + 1)
plt.scatter(t, omega_b[i], color='k', marker='.')
plt.scatter(t, measuredOmega[i], color=color, marker='.')
plt.xlabel('angular velocity ' + label)
# plot acceleration in nav
acceleration_n = self.scenario.acceleration_n(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(4, 3, i + 4)
plt.scatter(t, acceleration_n[i], color=color, marker='.')
plt.xlabel('acceleration in nav ' + label)
# plot acceleration in body
acceleration_b = self.scenario.acceleration_b(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(4, 3, i + 7)
plt.scatter(t, acceleration_b[i], color=color, marker='.')
plt.xlabel('acceleration in body ' + label)
# plot actual specific force, as well as corrupted
actual = self.runner.actualSpecificForce(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(4, 3, i + 10)
plt.scatter(t, actual[i], color='k', marker='.')
plt.scatter(t, measuredAcc[i], color=color, marker='.')
plt.xlabel('specific force ' + label)
def plotGroundTruthPose(self, t):
# plot ground truth pose, as well as prediction from integrated IMU measurements
actualPose = self.scenario.pose(t)
plotPose3(POSES_FIG, actualPose, 0.3)
t = actualPose.translation()
self.maxDim = max([abs(t[0]), abs(t[1]), abs(t[2]), self.maxDim])
ax = plt.gca()
ax.set_xlim3d(-self.maxDim, self.maxDim)
ax.set_ylim3d(-self.maxDim, self.maxDim)
ax.set_zlim3d(-self.maxDim, self.maxDim)
plt.pause(0.01)
def run(self):
# simulate the loop
T = 12
for i, t in enumerate(np.arange(0, T, self.dt)):
measuredOmega = self.runner.measuredAngularVelocity(t)
measuredAcc = self.runner.measuredSpecificForce(t)
if i % 25 == 0:
self.plotImu(t, measuredOmega, measuredAcc)
self.plotGroundTruthPose(t)
pim = self.runner.integrate(t, self.actualBias, True)
predictedNavState = self.runner.predict(pim, self.actualBias)
plotPose3(POSES_FIG, predictedNavState.pose(), 0.1)
plt.ioff()
plt.show()
if __name__ == '__main__':
PreintegrationExample().run()