408 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			408 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  ProjectionFactorRollingShutterRollingShutter.cpp
 | |
|  *  @brief Unit tests for ProjectionFactorRollingShutter Class
 | |
|  *  @author Luca Carlone
 | |
|  *  @date July 2021
 | |
|  */
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include <gtsam/base/TestableAssertions.h>
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| #include <gtsam/geometry/Cal3DS2.h>
 | |
| #include <gtsam/geometry/Cal3_S2.h>
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| #include <gtsam/geometry/Point3.h>
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
 | |
| 
 | |
| using namespace std::placeholders;
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // make a realistic calibration matrix
 | |
| static double fov = 60;  // degrees
 | |
| static size_t w = 640, h = 480;
 | |
| static Cal3_S2::shared_ptr K(new Cal3_S2(fov, w, h));
 | |
| 
 | |
| // Create a noise model for the pixel error
 | |
| static SharedNoiseModel model(noiseModel::Unit::Create(2));
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::L;
 | |
| using symbol_shorthand::T;
 | |
| using symbol_shorthand::X;
 | |
| 
 | |
| // Convenience to define common variables across many tests
 | |
| static Key poseKey1(X(1));
 | |
| static Key poseKey2(X(2));
 | |
| static Key pointKey(L(1));
 | |
| static double interp_params = 0.5;
 | |
| static Point2 measurement(323.0, 240.0);
 | |
| static Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
 | |
|                            Point3(0.25, -0.10, 1.0));
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ProjectionFactorRollingShutter, Constructor) {
 | |
|   ProjectionFactorRollingShutter factor(measurement, interp_params, model,
 | |
|                                         poseKey1, poseKey2, pointKey, K);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ProjectionFactorRollingShutter, ConstructorWithTransform) {
 | |
|   ProjectionFactorRollingShutter factor(measurement, interp_params, model,
 | |
|                                         poseKey1, poseKey2, pointKey, K,
 | |
|                                         body_P_sensor);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ProjectionFactorRollingShutter, Equals) {
 | |
|   {  // factors are equal
 | |
|     ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
 | |
|                                            poseKey1, poseKey2, pointKey, K);
 | |
|     ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
 | |
|                                            poseKey1, poseKey2, pointKey, K);
 | |
|     CHECK(assert_equal(factor1, factor2));
 | |
|   }
 | |
|   {  // factors are NOT equal (keys are different)
 | |
|     ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
 | |
|                                            poseKey1, poseKey2, pointKey, K);
 | |
|     ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
 | |
|                                            poseKey1, poseKey1, pointKey, K);
 | |
|     CHECK(!assert_equal(factor1, factor2));  // not equal
 | |
|   }
 | |
|   {  // factors are NOT equal (different interpolation)
 | |
|     ProjectionFactorRollingShutter factor1(measurement, 0.1, model, poseKey1,
 | |
|                                            poseKey1, pointKey, K);
 | |
|     ProjectionFactorRollingShutter factor2(measurement, 0.5, model, poseKey1,
 | |
|                                            poseKey2, pointKey, K);
 | |
|     CHECK(!assert_equal(factor1, factor2));  // not equal
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ProjectionFactorRollingShutter, EqualsWithTransform) {
 | |
|   {  // factors are equal
 | |
|     ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
 | |
|                                            poseKey1, poseKey2, pointKey, K,
 | |
|                                            body_P_sensor);
 | |
|     ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
 | |
|                                            poseKey1, poseKey2, pointKey, K,
 | |
|                                            body_P_sensor);
 | |
|     CHECK(assert_equal(factor1, factor2));
 | |
|   }
 | |
|   {  // factors are NOT equal
 | |
|     ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
 | |
|                                            poseKey1, poseKey2, pointKey, K,
 | |
|                                            body_P_sensor);
 | |
|     Pose3 body_P_sensor2(
 | |
|         Rot3::RzRyRx(0.0, 0.0, 0.0),
 | |
|         Point3(0.25, -0.10, 1.0));  // rotation different from body_P_sensor
 | |
|     ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
 | |
|                                            poseKey1, poseKey2, pointKey, K,
 | |
|                                            body_P_sensor2);
 | |
|     CHECK(!assert_equal(factor1, factor2));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ProjectionFactorRollingShutter, Error) {
 | |
|   {
 | |
|     // Create the factor with a measurement that is 3 pixels off in x
 | |
|     // Camera pose corresponds to the first camera
 | |
|     double t = 0.0;
 | |
|     ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1,
 | |
|                                           poseKey2, pointKey, K);
 | |
| 
 | |
|     // Set the linearization point
 | |
|     Pose3 pose1(Rot3(), Point3(0, 0, -6));
 | |
|     Pose3 pose2(Rot3(), Point3(0, 0, -4));
 | |
|     Point3 point(0.0, 0.0, 0.0);
 | |
| 
 | |
|     // Use the factor to calculate the error
 | |
|     Vector actualError(factor.evaluateError(pose1, pose2, point));
 | |
| 
 | |
|     // The expected error is (-3.0, 0.0) pixels / UnitCovariance
 | |
|     Vector expectedError = Vector2(-3.0, 0.0);
 | |
| 
 | |
|     // Verify we get the expected error
 | |
|     CHECK(assert_equal(expectedError, actualError, 1e-9));
 | |
|   }
 | |
|   {
 | |
|     // Create the factor with a measurement that is 3 pixels off in x
 | |
|     // Camera pose is actually interpolated now
 | |
|     double t = 0.5;
 | |
|     ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1,
 | |
|                                           poseKey2, pointKey, K);
 | |
| 
 | |
|     // Set the linearization point
 | |
|     Pose3 pose1(Rot3(), Point3(0, 0, -8));
 | |
|     Pose3 pose2(Rot3(), Point3(0, 0, -4));
 | |
|     Point3 point(0.0, 0.0, 0.0);
 | |
| 
 | |
|     // Use the factor to calculate the error
 | |
|     Vector actualError(factor.evaluateError(pose1, pose2, point));
 | |
| 
 | |
|     // The expected error is (-3.0, 0.0) pixels / UnitCovariance
 | |
|     Vector expectedError = Vector2(-3.0, 0.0);
 | |
| 
 | |
|     // Verify we get the expected error
 | |
|     CHECK(assert_equal(expectedError, actualError, 1e-9));
 | |
|   }
 | |
|   {
 | |
|     // Create measurement by projecting 3D landmark
 | |
|     double t = 0.3;
 | |
|     Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
 | |
|     Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
 | |
|     Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
 | |
|     PinholeCamera<Cal3_S2> camera(poseInterp, *K);
 | |
|     Point3 point(0.0, 0.0, 5.0);  // 5 meters in front of the camera
 | |
|     Point2 measured = camera.project(point);
 | |
| 
 | |
|     // create factor
 | |
|     ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
 | |
|                                           poseKey2, pointKey, K);
 | |
| 
 | |
|     // Use the factor to calculate the error
 | |
|     Vector actualError(factor.evaluateError(pose1, pose2, point));
 | |
| 
 | |
|     // The expected error is zero
 | |
|     Vector expectedError = Vector2(0.0, 0.0);
 | |
| 
 | |
|     // Verify we get the expected error
 | |
|     CHECK(assert_equal(expectedError, actualError, 1e-9));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ProjectionFactorRollingShutter, ErrorWithTransform) {
 | |
|   // Create measurement by projecting 3D landmark
 | |
|   double t = 0.3;
 | |
|   Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
 | |
|   Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
 | |
|   Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
 | |
|   Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0.2, 0.1));
 | |
|   PinholeCamera<Cal3_S2> camera(poseInterp * body_P_sensor3, *K);
 | |
|   Point3 point(0.0, 0.0, 5.0);  // 5 meters in front of the camera
 | |
|   Point2 measured = camera.project(point);
 | |
| 
 | |
|   // create factor
 | |
|   ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
 | |
|                                         pointKey, K, body_P_sensor3);
 | |
| 
 | |
|   // Use the factor to calculate the error
 | |
|   Vector actualError(factor.evaluateError(pose1, pose2, point));
 | |
| 
 | |
|   // The expected error is zero
 | |
|   Vector expectedError = Vector2(0.0, 0.0);
 | |
| 
 | |
|   // Verify we get the expected error
 | |
|   CHECK(assert_equal(expectedError, actualError, 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ProjectionFactorRollingShutter, Jacobian) {
 | |
|   // Create measurement by projecting 3D landmark
 | |
|   double t = 0.3;
 | |
|   Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
 | |
|   Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
 | |
|   Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
 | |
|   PinholeCamera<Cal3_S2> camera(poseInterp, *K);
 | |
|   Point3 point(0.0, 0.0, 5.0);  // 5 meters in front of the camera
 | |
|   Point2 measured = camera.project(point);
 | |
| 
 | |
|   // create factor
 | |
|   ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
 | |
|                                         pointKey, K);
 | |
| 
 | |
|   // Use the factor to calculate the Jacobians
 | |
|   Matrix H1Actual, H2Actual, H3Actual;
 | |
|   factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
 | |
| 
 | |
|   // Expected Jacobians via numerical derivatives
 | |
|   Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(
 | |
|       std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
 | |
|           std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
 | |
|                     std::placeholders::_1, std::placeholders::_2,
 | |
|                     std::placeholders::_3, boost::none, boost::none,
 | |
|                     boost::none)),
 | |
|       pose1, pose2, point);
 | |
| 
 | |
|   Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
 | |
|       std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
 | |
|           std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
 | |
|                     std::placeholders::_1, std::placeholders::_2,
 | |
|                     std::placeholders::_3, boost::none, boost::none,
 | |
|                     boost::none)),
 | |
|       pose1, pose2, point);
 | |
| 
 | |
|   Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(
 | |
|       std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
 | |
|           std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
 | |
|                     std::placeholders::_1, std::placeholders::_2,
 | |
|                     std::placeholders::_3, boost::none, boost::none,
 | |
|                     boost::none)),
 | |
|       pose1, pose2, point);
 | |
| 
 | |
|   CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
 | |
|   CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
 | |
|   CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ProjectionFactorRollingShutter, JacobianWithTransform) {
 | |
|   // Create measurement by projecting 3D landmark
 | |
|   double t = 0.6;
 | |
|   Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
 | |
|   Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
 | |
|   Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
 | |
|   Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0.2, 0.1));
 | |
|   PinholeCamera<Cal3_S2> camera(poseInterp * body_P_sensor3, *K);
 | |
|   Point3 point(0.0, 0.0, 5.0);  // 5 meters in front of the camera
 | |
|   Point2 measured = camera.project(point);
 | |
| 
 | |
|   // create factor
 | |
|   ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
 | |
|                                         pointKey, K, body_P_sensor3);
 | |
| 
 | |
|   // Use the factor to calculate the Jacobians
 | |
|   Matrix H1Actual, H2Actual, H3Actual;
 | |
|   factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
 | |
| 
 | |
|   // Expected Jacobians via numerical derivatives
 | |
|   Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(
 | |
|       std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
 | |
|           std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
 | |
|                     std::placeholders::_1, std::placeholders::_2,
 | |
|                     std::placeholders::_3, boost::none, boost::none,
 | |
|                     boost::none)),
 | |
|       pose1, pose2, point);
 | |
| 
 | |
|   Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
 | |
|       std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
 | |
|           std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
 | |
|                     std::placeholders::_1, std::placeholders::_2,
 | |
|                     std::placeholders::_3, boost::none, boost::none,
 | |
|                     boost::none)),
 | |
|       pose1, pose2, point);
 | |
| 
 | |
|   Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(
 | |
|       std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
 | |
|           std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
 | |
|                     std::placeholders::_1, std::placeholders::_2,
 | |
|                     std::placeholders::_3, boost::none, boost::none,
 | |
|                     boost::none)),
 | |
|       pose1, pose2, point);
 | |
| 
 | |
|   CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
 | |
|   CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
 | |
|   CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ProjectionFactorRollingShutter, cheirality) {
 | |
|   // Create measurement by projecting 3D landmark behind camera
 | |
|   double t = 0.3;
 | |
|   Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
 | |
|   Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
 | |
|   Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
 | |
|   PinholeCamera<Cal3_S2> camera(poseInterp, *K);
 | |
|   Point3 point(0.0, 0.0, -5.0);  // 5 meters behind the camera
 | |
| 
 | |
| #ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
 | |
|   Point2 measured = Point2(0.0, 0.0);  // project would throw an exception
 | |
|   {  // check that exception is thrown if we set throwCheirality = true
 | |
|     bool throwCheirality = true;
 | |
|     bool verboseCheirality = true;
 | |
|     ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
 | |
|                                           poseKey2, pointKey, K,
 | |
|                                           throwCheirality, verboseCheirality);
 | |
|     CHECK_EXCEPTION(factor.evaluateError(pose1, pose2, point),
 | |
|                     CheiralityException);
 | |
|   }
 | |
|   {  // check that exception is NOT thrown if we set throwCheirality = false,
 | |
|      // and outputs are correct
 | |
|     bool throwCheirality = false;    // default
 | |
|     bool verboseCheirality = false;  // default
 | |
|     ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
 | |
|                                           poseKey2, pointKey, K,
 | |
|                                           throwCheirality, verboseCheirality);
 | |
| 
 | |
|     // Use the factor to calculate the error
 | |
|     Matrix H1Actual, H2Actual, H3Actual;
 | |
|     Vector actualError(factor.evaluateError(pose1, pose2, point, H1Actual,
 | |
|                                             H2Actual, H3Actual));
 | |
| 
 | |
|     // The expected error is zero
 | |
|     Vector expectedError = Vector2::Constant(
 | |
|         2.0 * K->fx());  // this is what we return when point is behind camera
 | |
| 
 | |
|     // Verify we get the expected error
 | |
|     CHECK(assert_equal(expectedError, actualError, 1e-9));
 | |
|     CHECK(assert_equal(Matrix::Zero(2, 6), H1Actual, 1e-5));
 | |
|     CHECK(assert_equal(Matrix::Zero(2, 6), H2Actual, 1e-5));
 | |
|     CHECK(assert_equal(Matrix::Zero(2, 3), H3Actual, 1e-5));
 | |
|   }
 | |
| #else
 | |
|   {
 | |
|     // everything is well defined, hence this matches the test "Jacobian" above:
 | |
|     Point2 measured = camera.project(point);
 | |
| 
 | |
|     // create factor
 | |
|     ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
 | |
|                                           poseKey2, pointKey, K);
 | |
| 
 | |
|     // Use the factor to calculate the Jacobians
 | |
|     Matrix H1Actual, H2Actual, H3Actual;
 | |
|     factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
 | |
| 
 | |
|     // Expected Jacobians via numerical derivatives
 | |
|     Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(
 | |
|         std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
 | |
|             std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
 | |
|                       std::placeholders::_1, std::placeholders::_2,
 | |
|                       std::placeholders::_3, boost::none, boost::none,
 | |
|                       boost::none)),
 | |
|         pose1, pose2, point);
 | |
| 
 | |
|     Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
 | |
|         std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
 | |
|             std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
 | |
|                       std::placeholders::_1, std::placeholders::_2,
 | |
|                       std::placeholders::_3, boost::none, boost::none,
 | |
|                       boost::none)),
 | |
|         pose1, pose2, point);
 | |
| 
 | |
|     Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(
 | |
|         std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
 | |
|             std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
 | |
|                       std::placeholders::_1, std::placeholders::_2,
 | |
|                       std::placeholders::_3, boost::none, boost::none,
 | |
|                       boost::none)),
 | |
|         pose1, pose2, point);
 | |
| 
 | |
|     CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
 | |
|     CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
 | |
|     CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
|   TestResult tr;
 | |
|   return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |