gtsam/slam/GaussianISAM2.cpp

160 lines
5.4 KiB
C++

/**
* @file GaussianISAM2
* @brief Full non-linear ISAM
* @author Michael Kaess
*/
#include <gtsam/slam/GaussianISAM2.h>
using namespace std;
using namespace gtsam;
// Explicitly instantiate so we don't have to include everywhere
#include <gtsam/inference/ISAM2-inl.h>
template class ISAM2<GaussianConditional, simulated2D::Values>;
template class ISAM2<GaussianConditional, planarSLAM::Values>;
namespace gtsam {
/* ************************************************************************* */
void optimize2(const GaussianISAM2::sharedClique& clique, double threshold,
vector<bool>& changed, const vector<bool>& replaced, Permuted<VectorValues>& delta, int& count) {
// if none of the variables in this clique (frontal and separator!) changed
// significantly, then by the running intersection property, none of the
// cliques in the children need to be processed
bool process_children = false;
// parents are assumed to already be solved and available in result
GaussianISAM2::Clique::const_reverse_iterator it;
for (it = clique->rbegin(); it!=clique->rend(); it++) {
boost::shared_ptr<const GaussianConditional> cg = *it;
// is this variable part of the top of the tree that has been redone?
bool redo = replaced[cg->key()];
// only solve if at least one of the separator variables changed
// significantly, ie. is in the set "changed"
bool found = true;
if (!redo && cg->nrParents()>0) {
found = false;
BOOST_FOREACH(const varid_t& key, cg->parents()) {
if (changed[key]) {
found = true;
}
}
}
if (found) {
// Solve for that variable
Vector d = cg->solve(delta);
count++;
// have to process children; only if none of the variables in the
// clique were affected, and none of the variables in the clique
// had a variable in the separator that changed significantly
// can we be sure that the subtree is not affected
process_children = true;
// we change the delta unconditionally if redo, otherwise
// conditioned on the change being above the threshold
if (!redo) {
// change is measured against the previous delta!
// if (delta.contains(cg->key())) {
const VectorValues::mapped_type d_old(delta[cg->key()]);
assert(d_old.size() == d.size());
for(size_t i=0; i<d_old.size(); ++i) {
if(fabs(d(i) - d_old(i)) >= threshold) {
redo = true;
break;
}
}
// if(boost::numeric::ublas::norm_inf(d - delta[cg->key()]) >= threshold)
// redo = true;
// } else {
// redo = true; // never created before, so we simply add it
// }
}
// replace current entry in delta vector
if (redo) {
changed[cg->key()] = true;
// if (delta.contains(cg->key())) {
delta[cg->key()] = d; // replace existing entry
// } else {
// delta.insert(cg->key(), d); // insert new entry
// }
}
}
}
if (process_children) {
BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) {
optimize2(child, threshold, changed, replaced, delta, count);
}
}
}
/* ************************************************************************* */
// fast full version without threshold
void optimize2(const GaussianISAM2::sharedClique& clique, VectorValues& delta) {
// parents are assumed to already be solved and available in result
GaussianISAM2::Clique::const_reverse_iterator it;
for (it = clique->rbegin(); it!=clique->rend(); it++) {
GaussianConditional::shared_ptr cg = *it;
Vector d = cg->solve(delta);
// store result in partial solution
delta[cg->key()] = d;
}
BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) {
optimize2(child, delta);
}
}
///* ************************************************************************* */
//boost::shared_ptr<VectorValues> optimize2(const GaussianISAM2::sharedClique& root) {
// boost::shared_ptr<VectorValues> delta(new VectorValues());
// set<Symbol> changed;
// // starting from the root, call optimize on each conditional
// optimize2(root, delta);
// return delta;
//}
/* ************************************************************************* */
int optimize2(const GaussianISAM2::sharedClique& root, double threshold, const vector<bool>& keys, Permuted<VectorValues>& delta) {
vector<bool> changed(keys.size(), false);
int count = 0;
// starting from the root, call optimize on each conditional
optimize2(root, threshold, changed, keys, delta, count);
return count;
}
/* ************************************************************************* */
void nnz_internal(const GaussianISAM2::sharedClique& clique, int& result) {
// go through the conditionals of this clique
GaussianISAM2::Clique::const_reverse_iterator it;
for (it = clique->rbegin(); it!=clique->rend(); it++) {
boost::shared_ptr<const GaussianConditional> cg = *it;
int dimSep = 0;
for (GaussianConditional::const_iterator matrix_it = cg->beginParents(); matrix_it != cg->endParents(); matrix_it++) {
dimSep += cg->get_S(matrix_it).size2();
}
int dimR = cg->dim();
result += ((dimR+1)*dimR)/2 + dimSep*dimR;
}
// traverse the children
BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) {
nnz_internal(child, result);
}
}
/* ************************************************************************* */
int calculate_nnz(const GaussianISAM2::sharedClique& clique) {
int result = 0;
// starting from the root, add up entries of frontal and conditional matrices of each conditional
nnz_internal(clique, result);
return result;
}
} /// namespace gtsam