gtsam/linear/tests/timeSLAMlike.cpp

134 lines
4.4 KiB
C++

/**
* @file timeSLAMlike.cpp
* @brief Times solving of random SLAM-like graphs
* @author Richard Roberts
* @created Aug 30, 2010
*/
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/SharedDiagonal.h>
#include <gtsam/inference/inference-inl.h>
#include <boost/random.hpp>
#include <boost/timer.hpp>
#include <boost/bind.hpp>
#include <boost/lambda/lambda.hpp>
#include <vector>
using namespace gtsam;
using namespace std;
using namespace boost::lambda;
static boost::variate_generator<boost::mt19937, boost::uniform_real<> > rg(boost::mt19937(), boost::uniform_real<>(0.0, 1.0));
bool _pair_compare(const pair<varid_t, Matrix>& a1, const pair<varid_t, Matrix>& a2) { return a1.first < a2.first; }
int main(int argc, char *argv[]) {
size_t vardim = 3;
size_t blockdim = 3;
size_t nVars = 2000;
size_t blocksPerVar = 5;
size_t varsPerBlock = 2;
size_t varSpread = 10;
size_t nTrials = 100;
double blockbuild, blocksolve;
cout << "\n" << nVars << " variables of dimension " << vardim << ", " <<
blocksPerVar << " blocks for each variable, blocks of dimension " << blockdim << " measure " << varsPerBlock << " variables\n";
cout << nTrials << " trials\n";
boost::variate_generator<boost::mt19937, boost::uniform_int<> > ri(boost::mt19937(), boost::uniform_int<>(-varSpread, varSpread));
/////////////////////////////////////////////////////////////////////////////
// Timing test with blockwise Gaussian factor graphs
{
// Build GFG's
cout << "Building SLAM-like Gaussian factor graphs... ";
cout.flush();
boost::timer timer;
timer.restart();
vector<GaussianFactorGraph> blockGfgs;
blockGfgs.reserve(nTrials);
for(size_t trial=0; trial<nTrials; ++trial) {
blockGfgs.push_back(GaussianFactorGraph());
SharedDiagonal noise = sharedSigma(blockdim, 1.0);
for(size_t c=0; c<nVars; ++c) {
for(size_t d=0; d<blocksPerVar; ++d) {
vector<pair<varid_t, Matrix> > terms; terms.reserve(varsPerBlock);
if(c == 0 && d == 0)
// If it's the first factor, just make a prior
terms.push_back(make_pair(0, eye(vardim)));
else if(c != 0) {
// Generate a random Gaussian factor
for(size_t h=0; h<varsPerBlock; ++h) {
varid_t var;
// If it's the first factor for this variable, make it "odometry"
if(d == 0 && h == 0)
var = c-1;
else if(d == 0 && h == 1)
var = c;
else
// Choose random variable ids
do
var = c + ri();
while(var < 0 || var > nVars-1 || find_if(terms.begin(), terms.end(),
boost::bind(&pair<varid_t, Matrix>::first, boost::lambda::_1) == var) != terms.end());
Matrix A(blockdim, vardim);
for(size_t j=0; j<blockdim; ++j)
for(size_t k=0; k<vardim; ++k)
A(j,k) = rg();
terms.push_back(make_pair(var, A));
}
}
Vector b(blockdim);
sort(terms.begin(), terms.end(), &_pair_compare);
for(size_t j=0; j<blockdim; ++j)
b(j) = rg();
if(!terms.empty())
blockGfgs[trial].push_back(GaussianFactor::shared_ptr(new GaussianFactor(terms, b, noise)));
}
}
// if(trial == 0)
// blockGfgs.front().print("GFG: ");
}
blockbuild = timer.elapsed();
cout << blockbuild << " s" << endl;
// Solve GFG's
cout << "Solving SLAM-like Gaussian factor graphs... ";
cout.flush();
timer.restart();
for(size_t trial=0; trial<nTrials; ++trial) {
// cout << "Trial " << trial << endl;
GaussianBayesNet::shared_ptr gbn(Inference::Eliminate(blockGfgs[trial]));
VectorValues soln(optimize(*gbn));
}
blocksolve = timer.elapsed();
cout << blocksolve << " s" << endl;
}
/////////////////////////////////////////////////////////////////////////////
// Print per-graph times
cout << "\nPer-factor-graph times for building and solving\n";
cout << " total " << (1000.0*(blockbuild+blocksolve)/double(nTrials)) <<
" build " << (1000.0*blockbuild/double(nTrials)) <<
" solve " << (1000.0*blocksolve/double(nTrials)) << " ms/graph\n";
cout << endl;
return 0;
}
/**
* @file timeSLAMlike.cpp
* @brief
* @author Richard Roberts
* @created Aug 30, 2010
*/