gtsam/gtsam/geometry/Rot3M.cpp

306 lines
9.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Rot3M.cpp
* @brief Rotation (internal: 3*3 matrix representation*)
* @author Alireza Fathi
* @author Christian Potthast
* @author Frank Dellaert
* @author Richard Roberts
*/
#include <gtsam/config.h> // Get GTSAM_USE_QUATERNIONS macro
#ifndef GTSAM_USE_QUATERNIONS
#include <gtsam/geometry/Rot3.h>
#include <boost/math/constants/constants.hpp>
#include <cmath>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
Rot3::Rot3() : rot_(I_3x3) {}
/* ************************************************************************* */
Rot3::Rot3(const Point3& col1, const Point3& col2, const Point3& col3) {
rot_.col(0) = col1.vector();
rot_.col(1) = col2.vector();
rot_.col(2) = col3.vector();
}
/* ************************************************************************* */
Rot3::Rot3(double R11, double R12, double R13,
double R21, double R22, double R23,
double R31, double R32, double R33) {
rot_ << R11, R12, R13,
R21, R22, R23,
R31, R32, R33;
}
/* ************************************************************************* */
Rot3::Rot3(const Matrix3& R) {
rot_ = R;
}
/* ************************************************************************* */
Rot3::Rot3(const Matrix& R) {
if (R.rows()!=3 || R.cols()!=3)
throw invalid_argument("Rot3 constructor expects 3*3 matrix");
rot_ = R;
}
/* ************************************************************************* */
Rot3::Rot3(const Quaternion& q) : rot_(q.toRotationMatrix()) {
}
/* ************************************************************************* */
Rot3 Rot3::Rx(double t) {
double st = sin(t), ct = cos(t);
return Rot3(
1, 0, 0,
0, ct,-st,
0, st, ct);
}
/* ************************************************************************* */
Rot3 Rot3::Ry(double t) {
double st = sin(t), ct = cos(t);
return Rot3(
ct, 0, st,
0, 1, 0,
-st, 0, ct);
}
/* ************************************************************************* */
Rot3 Rot3::Rz(double t) {
double st = sin(t), ct = cos(t);
return Rot3(
ct,-st, 0,
st, ct, 0,
0, 0, 1);
}
/* ************************************************************************* */
// Considerably faster than composing matrices above !
Rot3 Rot3::RzRyRx(double x, double y, double z) {
double cx=cos(x),sx=sin(x);
double cy=cos(y),sy=sin(y);
double cz=cos(z),sz=sin(z);
double ss_ = sx * sy;
double cs_ = cx * sy;
double sc_ = sx * cy;
double cc_ = cx * cy;
double c_s = cx * sz;
double s_s = sx * sz;
double _cs = cy * sz;
double _cc = cy * cz;
double s_c = sx * cz;
double c_c = cx * cz;
double ssc = ss_ * cz, csc = cs_ * cz, sss = ss_ * sz, css = cs_ * sz;
return Rot3(
_cc,- c_s + ssc, s_s + csc,
_cs, c_c + sss, -s_c + css,
-sy, sc_, cc_
);
}
/* ************************************************************************* */
Rot3 Rot3::rodriguez(const Vector3& w, double theta) {
// get components of axis \omega
double wx = w(0), wy=w(1), wz=w(2);
double wwTxx = wx*wx, wwTyy = wy*wy, wwTzz = wz*wz;
#ifndef NDEBUG
double l_n = wwTxx + wwTyy + wwTzz;
if (std::abs(l_n-1.0)>1e-9) throw domain_error("rodriguez: length of n should be 1");
#endif
double c = cos(theta), s = sin(theta), c_1 = 1 - c;
double swx = wx * s, swy = wy * s, swz = wz * s;
double C00 = c_1*wwTxx, C01 = c_1*wx*wy, C02 = c_1*wx*wz;
double C11 = c_1*wwTyy, C12 = c_1*wy*wz;
double C22 = c_1*wwTzz;
return Rot3(
c + C00, -swz + C01, swy + C02,
swz + C01, c + C11, -swx + C12,
-swy + C02, swx + C12, c + C22);
}
/* ************************************************************************* */
Rot3 Rot3::compose(const Rot3& R2, OptionalJacobian<3, 3> H1, OptionalJacobian<3, 3> H2) const {
if (H1) *H1 = R2.transpose();
if (H2) *H2 = I_3x3;
return *this * R2;
}
/* ************************************************************************* */
Rot3 Rot3::operator*(const Rot3& R2) const {
return Rot3(Matrix3(rot_*R2.rot_));
}
/* ************************************************************************* */
// TODO const Eigen::Transpose<const Matrix3> Rot3::transpose() const {
Matrix3 Rot3::transpose() const {
return rot_.transpose();
}
/* ************************************************************************* */
Rot3 Rot3::inverse(OptionalJacobian<3,3> H1) const {
if (H1) *H1 = -rot_;
return Rot3(Matrix3(transpose()));
}
/* ************************************************************************* */
Rot3 Rot3::between (const Rot3& R2,
OptionalJacobian<3,3> H1, OptionalJacobian<3,3> H2) const {
if (H1) *H1 = -(R2.transpose()*rot_);
if (H2) *H2 = I_3x3;
Matrix3 R12 = transpose()*R2.rot_;
return Rot3(R12);
}
/* ************************************************************************* */
Point3 Rot3::rotate(const Point3& p,
OptionalJacobian<3,3> H1, OptionalJacobian<3,3> H2) const {
if (H1 || H2) {
if (H1) *H1 = rot_ * skewSymmetric(-p.x(), -p.y(), -p.z());
if (H2) *H2 = rot_;
}
return Point3(rot_ * p.vector());
}
/* ************************************************************************* */
// Log map at identity - return the canonical coordinates of this rotation
Vector3 Rot3::Logmap(const Rot3& R) {
static const double PI = boost::math::constants::pi<double>();
const Matrix3& rot = R.rot_;
// Get trace(R)
double tr = rot.trace();
// when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, etc.
// we do something special
if (std::abs(tr+1.0) < 1e-10) {
if(std::abs(rot(2,2)+1.0) > 1e-10)
return (PI / sqrt(2.0+2.0*rot(2,2) )) *
Vector3(rot(0,2), rot(1,2), 1.0+rot(2,2));
else if(std::abs(rot(1,1)+1.0) > 1e-10)
return (PI / sqrt(2.0+2.0*rot(1,1))) *
Vector3(rot(0,1), 1.0+rot(1,1), rot(2,1));
else // if(std::abs(R.r1_.x()+1.0) > 1e-10) This is implicit
return (PI / sqrt(2.0+2.0*rot(0,0))) *
Vector3(1.0+rot(0,0), rot(1,0), rot(2,0));
} else {
double magnitude;
double tr_3 = tr-3.0; // always negative
if (tr_3<-1e-7) {
double theta = acos((tr-1.0)/2.0);
magnitude = theta/(2.0*sin(theta));
} else {
// when theta near 0, +-2pi, +-4pi, etc. (trace near 3.0)
// use Taylor expansion: magnitude \approx 1/2-(t-3)/12 + O((t-3)^2)
magnitude = 0.5 - tr_3*tr_3/12.0;
}
return magnitude*Vector3(
rot(2,1)-rot(1,2),
rot(0,2)-rot(2,0),
rot(1,0)-rot(0,1));
}
}
/* ************************************************************************* */
Rot3 Rot3::retractCayley(const Vector& omega) const {
const double x = omega(0), y = omega(1), z = omega(2);
const double x2 = x * x, y2 = y * y, z2 = z * z;
const double xy = x * y, xz = x * z, yz = y * z;
const double f = 1.0 / (4.0 + x2 + y2 + z2), _2f = 2.0 * f;
return (*this)
* Rot3((4 + x2 - y2 - z2) * f, (xy - 2 * z) * _2f, (xz + 2 * y) * _2f,
(xy + 2 * z) * _2f, (4 - x2 + y2 - z2) * f, (yz - 2 * x) * _2f,
(xz - 2 * y) * _2f, (yz + 2 * x) * _2f, (4 - x2 - y2 + z2) * f);
}
/* ************************************************************************* */
Rot3 Rot3::retract(const Vector& omega, Rot3::CoordinatesMode mode) const {
if(mode == Rot3::EXPMAP) {
return (*this)*Expmap(omega);
} else if(mode == Rot3::CAYLEY) {
return retractCayley(omega);
} else if(mode == Rot3::SLOW_CAYLEY) {
Matrix3 Omega = skewSymmetric(omega);
return (*this)*CayleyFixed<3>(-Omega/2);
} else {
assert(false);
exit(1);
}
}
/* ************************************************************************* */
Vector3 Rot3::localCoordinates(const Rot3& T, Rot3::CoordinatesMode mode) const {
if(mode == Rot3::EXPMAP) {
return Logmap(between(T));
} else if(mode == Rot3::CAYLEY) {
// Create a fixed-size matrix
Matrix3 A = rot_.transpose() * T.matrix();
// Mathematica closed form optimization (procrastination?) gone wild:
const double a=A(0,0),b=A(0,1),c=A(0,2);
const double d=A(1,0),e=A(1,1),f=A(1,2);
const double g=A(2,0),h=A(2,1),i=A(2,2);
const double di = d*i, ce = c*e, cd = c*d, fg=f*g;
const double M = 1 + e - f*h + i + e*i;
const double K = - 4.0 / (cd*h + M + a*M -g*(c + ce) - b*(d + di - fg));
const double x = a * f - cd + f;
const double y = b * f - ce - c;
const double z = fg - di - d;
return K * Vector3(x, y, z);
} else if(mode == Rot3::SLOW_CAYLEY) {
// Create a fixed-size matrix
Matrix3 A(between(T).matrix());
// using templated version of Cayley
Matrix3 Omega = CayleyFixed<3>(A);
return -2*Vector3(Omega(2,1),Omega(0,2),Omega(1,0));
} else {
assert(false);
exit(1);
}
}
/* ************************************************************************* */
Matrix3 Rot3::matrix() const {
return rot_;
}
/* ************************************************************************* */
Point3 Rot3::r1() const { return Point3(rot_.col(0)); }
/* ************************************************************************* */
Point3 Rot3::r2() const { return Point3(rot_.col(1)); }
/* ************************************************************************* */
Point3 Rot3::r3() const { return Point3(rot_.col(2)); }
/* ************************************************************************* */
Quaternion Rot3::toQuaternion() const {
return Quaternion(rot_);
}
/* ************************************************************************* */
} // namespace gtsam
#endif