gtsam/linear/GaussianBayesNet.cpp

216 lines
7.3 KiB
C++

/**
* @file GaussianBayesNet.cpp
* @brief Chordal Bayes Net, the result of eliminating a factor graph
* @author Frank Dellaert
*/
#include <stdarg.h>
#include <boost/foreach.hpp>
#include <boost/tuple/tuple.hpp>
#include <gtsam/base/Matrix-inl.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/VectorValues.h>
using namespace std;
using namespace gtsam;
// Explicitly instantiate so we don't have to include everywhere
#include <gtsam/inference/BayesNet-inl.h>
template class BayesNet<GaussianConditional>;
// trick from some reading group
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
#define REVERSE_FOREACH_PAIR( KEY, VAL, COL) BOOST_REVERSE_FOREACH (boost::tie(KEY,VAL),COL)
namespace gtsam {
/* ************************************************************************* */
GaussianBayesNet scalarGaussian(Index key, double mu, double sigma) {
GaussianBayesNet bn;
GaussianConditional::shared_ptr
conditional(new GaussianConditional(key, Vector_(1,mu)/sigma, eye(1)/sigma, ones(1)));
bn.push_back(conditional);
return bn;
}
/* ************************************************************************* */
GaussianBayesNet simpleGaussian(Index key, const Vector& mu, double sigma) {
GaussianBayesNet bn;
size_t n = mu.size();
GaussianConditional::shared_ptr
conditional(new GaussianConditional(key, mu/sigma, eye(n)/sigma, ones(n)));
bn.push_back(conditional);
return bn;
}
/* ************************************************************************* */
void push_front(GaussianBayesNet& bn, Index key, Vector d, Matrix R,
Index name1, Matrix S, Vector sigmas) {
GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, sigmas));
bn.push_front(cg);
}
/* ************************************************************************* */
void push_front(GaussianBayesNet& bn, Index key, Vector d, Matrix R,
Index name1, Matrix S, Index name2, Matrix T, Vector sigmas) {
GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, name2, T, sigmas));
bn.push_front(cg);
}
/* ************************************************************************* */
boost::shared_ptr<VectorValues> allocateVectorValues(const GaussianBayesNet& bn) {
vector<size_t> dimensions(bn.size());
Index var = 0;
BOOST_FOREACH(const boost::shared_ptr<const GaussianConditional> conditional, bn) {
dimensions[var++] = conditional->get_R().size1();
}
return boost::shared_ptr<VectorValues>(new VectorValues(dimensions));
}
/* ************************************************************************* */
VectorValues optimize(const GaussianBayesNet& bn)
{
return *optimize_(bn);
}
/* ************************************************************************* */
boost::shared_ptr<VectorValues> optimize_(const GaussianBayesNet& bn)
{
boost::shared_ptr<VectorValues> result(allocateVectorValues(bn));
/** solve each node in turn in topological sort order (parents first)*/
BOOST_REVERSE_FOREACH(GaussianConditional::shared_ptr cg, bn) {
Vector x = cg->solve(*result); // Solve for that variable
(*result)[cg->key()] = x; // store result in partial solution
}
return result;
}
/* ************************************************************************* */
VectorValues backSubstitute(const GaussianBayesNet& bn, const VectorValues& y) {
VectorValues x(y);
backSubstituteInPlace(bn,x);
return x;
}
/* ************************************************************************* */
// (R*x)./sigmas = y by solving x=inv(R)*(y.*sigmas)
void backSubstituteInPlace(const GaussianBayesNet& bn, VectorValues& y) {
VectorValues& x = y;
/** solve each node in turn in topological sort order (parents first)*/
BOOST_REVERSE_FOREACH(const boost::shared_ptr<const GaussianConditional> cg, bn) {
// i^th part of R*x=y, x=inv(R)*y
// (Rii*xi + R_i*x(i+1:))./si = yi <-> xi = inv(Rii)*(yi.*si - R_i*x(i+1:))
Index i = cg->key();
Vector zi = emul(y[i],cg->get_sigmas());
GaussianConditional::const_iterator it;
for (it = cg->beginParents(); it!= cg->endParents(); it++) {
multiplyAdd(-1.0,cg->get_S(it),x[*it],zi);
}
x[i] = gtsam::backSubstituteUpper(cg->get_R(), zi);
}
}
/* ************************************************************************* */
// gy=inv(L)*gx by solving L*gy=gx.
// gy=inv(R'*inv(Sigma))*gx
// gz'*R'=gx', gy = gz.*sigmas
VectorValues backSubstituteTranspose(const GaussianBayesNet& bn,
const VectorValues& gx) {
// Initialize gy from gx
// TODO: used to insert zeros if gx did not have an entry for a variable in bn
VectorValues gy = gx;
// we loop from first-eliminated to last-eliminated
// i^th part of L*gy=gx is done block-column by block-column of L
BOOST_FOREACH(const boost::shared_ptr<const GaussianConditional> cg, bn) {
Index j = cg->key();
gy[j] = gtsam::backSubstituteUpper(gy[j],cg->get_R());
GaussianConditional::const_iterator it;
for (it = cg->beginParents(); it!= cg->endParents(); it++) {
const Index i = *it;
transposeMultiplyAdd(-1.0,cg->get_S(it),gy[j],gy[i]);
}
}
// Scale gy
BOOST_FOREACH(GaussianConditional::shared_ptr cg, bn) {
Index j = cg->key();
gy[j] = emul(gy[j],cg->get_sigmas());
}
return gy;
}
/* ************************************************************************* */
pair<Matrix,Vector> matrix(const GaussianBayesNet& bn) {
// add the dimensions of all variables to get matrix dimension
// and at the same time create a mapping from keys to indices
size_t N=0; map<Index,size_t> mapping;
BOOST_FOREACH(GaussianConditional::shared_ptr cg,bn) {
mapping.insert(make_pair(cg->key(),N));
N += cg->dim();
}
// create matrix and copy in values
Matrix R = zeros(N,N);
Vector d(N);
Index key; size_t I;
FOREACH_PAIR(key,I,mapping) {
// find corresponding conditional
boost::shared_ptr<const GaussianConditional> cg = bn[key];
// get sigmas
Vector sigmas = cg->get_sigmas();
// get RHS and copy to d
GaussianConditional::const_d_type d_ = cg->get_d();
const size_t n = d_.size();
for (size_t i=0;i<n;i++)
d(I+i) = d_(i)/sigmas(i);
// get leading R matrix and copy to R
GaussianConditional::const_r_type R_ = cg->get_R();
for (size_t i=0;i<n;i++)
for(size_t j=0;j<n;j++)
R(I+i,I+j) = R_(i,j)/sigmas(i);
// loop over S matrices and copy them into R
GaussianConditional::const_iterator keyS = cg->beginParents();
for (; keyS!=cg->endParents(); keyS++) {
Matrix S = cg->get_S(keyS); // get S matrix
const size_t m = S.size1(), n = S.size2(); // find S size
const size_t J = mapping[*keyS]; // find column index
for (size_t i=0;i<m;i++)
for(size_t j=0;j<n;j++)
R(I+i,J+j) = S(i,j)/sigmas(i);
} // keyS
} // keyI
return make_pair(R,d);
}
/* ************************************************************************* */
VectorValues rhs(const GaussianBayesNet& bn) {
boost::shared_ptr<VectorValues> result(allocateVectorValues(bn));
BOOST_FOREACH(boost::shared_ptr<const GaussianConditional> cg,bn) {
Index key = cg->key();
// get sigmas
const Vector& sigmas = cg->get_sigmas();
// get RHS and copy to d
GaussianConditional::const_d_type d = cg->get_d();
(*result)[key] = ediv_(d,sigmas); // TODO ediv_? I think not
}
return *result;
}
/* ************************************************************************* */
} // namespace gtsam