449 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			449 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
/**
 | 
						|
 * @file    numericalDerivative.h
 | 
						|
 * @brief   Some functions to compute numerical derivatives
 | 
						|
 * @author  Frank Dellaert
 | 
						|
 */
 | 
						|
 | 
						|
// \callgraph
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <boost/function.hpp>
 | 
						|
#include <boost/bind.hpp>
 | 
						|
 | 
						|
#include <gtsam/base/Lie.h>
 | 
						|
#include <gtsam/base/LieVector.h>
 | 
						|
#include <gtsam/base/Matrix.h>
 | 
						|
 | 
						|
//#define LINEARIZE_AT_IDENTITY
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Note that all of these functions have two versions, a boost.function version and a
 | 
						|
	 * standard C++ function pointer version.  This allows reformulating the arguments of
 | 
						|
	 * a function to fit the correct structure, which is useful for situations like
 | 
						|
	 * member functions and functions with arguments not involved in the derivative:
 | 
						|
	 *
 | 
						|
	 * Usage of the boost bind version to rearrange arguments:
 | 
						|
	 *   for a function with one relevant param and an optional derivative:
 | 
						|
	 *   	Foo bar(const Obj& a, boost::optional<Matrix&> H1)
 | 
						|
	 *   Use boost.bind to restructure:
 | 
						|
	 *   	boost::bind(bar, _1, boost::none)
 | 
						|
	 *   This syntax will fix the optional argument to boost::none, while using the first argument provided
 | 
						|
	 *
 | 
						|
	 * For member functions, such as below, with an instantiated copy instanceOfSomeClass
 | 
						|
	 * 		Foo SomeClass::bar(const Obj& a)
 | 
						|
	 * Use boost bind as follows to create a function pointer that uses the member function:
 | 
						|
	 * 	    boost::bind(&SomeClass::bar, ref(instanceOfSomeClass), _1)
 | 
						|
	 *
 | 
						|
	 * For additional details, see the documentation:
 | 
						|
	 * 		http://www.boost.org/doc/libs/1_43_0/libs/bind/bind.html
 | 
						|
	 */
 | 
						|
 | 
						|
 | 
						|
	/** global functions for converting to a LieVector for use with numericalDerivative */
 | 
						|
        inline LieVector makeLieVector(const Vector& v) { return LieVector(v); }
 | 
						|
	inline LieVector makeLieVectorD(double d) { return LieVector(Vector_(1, d)); }
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Numerically compute gradient of scalar function
 | 
						|
	 * Class X is the input argument
 | 
						|
	 * The class X needs to have dim, expmap, logmap
 | 
						|
	 */
 | 
						|
	template<class X>
 | 
						|
	Vector numericalGradient(boost::function<double(const X&)> h, const X& x, double delta=1e-5) {
 | 
						|
		double factor = 1.0/(2.0*delta);
 | 
						|
		const size_t n = x.dim();
 | 
						|
		Vector d(n,0.0), g(n,0.0);
 | 
						|
		for (size_t j=0;j<n;j++) {
 | 
						|
			d(j) +=   delta; double hxplus = h(expmap(x,d));
 | 
						|
			d(j) -= 2*delta; double hxmin  = h(expmap(x,d));
 | 
						|
			d(j) +=   delta; g(j) = (hxplus-hxmin)*factor;
 | 
						|
		}
 | 
						|
		return g;
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X>
 | 
						|
	Vector numericalGradient(double (*h)(const X&), const X& x, double delta=1e-5) {
 | 
						|
		return numericalGradient<X>(boost::bind(h, _1), x, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Compute numerical derivative in argument 1 of unary function
 | 
						|
	 * @param h unary function yielding m-vector
 | 
						|
	 * @param x n-dimensional value at which to evaluate h
 | 
						|
	 * @param delta increment for numerical derivative
 | 
						|
	 * Class Y is the output argument
 | 
						|
	 * Class X is the input argument
 | 
						|
	 * @return m*n Jacobian computed via central differencing
 | 
						|
	 * Both classes X,Y need dim, expmap, logmap
 | 
						|
	 */
 | 
						|
	template<class Y, class X>
 | 
						|
	Matrix numericalDerivative11(boost::function<Y(const X&)> h, const X& x, double delta=1e-5) {
 | 
						|
		Y hx = h(x);
 | 
						|
		double factor = 1.0/(2.0*delta);
 | 
						|
		const size_t m = hx.dim(), n = x.dim();
 | 
						|
		Vector d(n,0.0);
 | 
						|
		Matrix H = zeros(m,n);
 | 
						|
		for (size_t j=0;j<n;j++) {
 | 
						|
			d(j) +=   delta; Vector hxplus = hx.logmap(h(x.expmap(d)));
 | 
						|
			d(j) -= 2*delta; Vector hxmin  = hx.logmap(h(x.expmap(d)));
 | 
						|
			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor;
 | 
						|
			for (size_t i=0;i<m;i++) H(i,j) = dh(i);
 | 
						|
		}
 | 
						|
		return H;
 | 
						|
	}
 | 
						|
 | 
						|
	/** use a raw C++ function pointer */
 | 
						|
	template<class Y, class X>
 | 
						|
	Matrix numericalDerivative11(Y (*h)(const X&), const X& x, double delta=1e-5) {
 | 
						|
		return numericalDerivative11<Y,X>(boost::bind(h, _1), x, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** remapping for double valued functions */
 | 
						|
	template<class X>
 | 
						|
	Matrix numericalDerivative11(boost::function<double(const X&)> h, const X& x, double delta=1e-5) {
 | 
						|
		return numericalDerivative11<LieVector, X>(boost::bind(makeLieVectorD, boost::bind(h, _1)), x, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X>
 | 
						|
	Matrix numericalDerivative11(double (*h)(const X&), const X& x, double delta=1e-5) {
 | 
						|
		return numericalDerivative11<LieVector, X>(boost::bind(makeLieVectorD, boost::bind(h, _1)), x, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** remapping for vector valued functions */
 | 
						|
	template<class X>
 | 
						|
	Matrix numericalDerivative11(boost::function<Vector(const X&)> h, const X& x, double delta=1e-5) {
 | 
						|
		return numericalDerivative11<LieVector, X>(boost::bind(makeLieVector, boost::bind(h, _1)), x, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X>
 | 
						|
	Matrix numericalDerivative11(Vector (*h)(const X&), const X& x, double delta=1e-5) {
 | 
						|
		return numericalDerivative11<LieVector, X>(boost::bind(makeLieVector, boost::bind(h, _1)), x, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Compute numerical derivative in argument 1 of binary function
 | 
						|
	 * @param h binary function yielding m-vector
 | 
						|
	 * @param x1 n-dimensional first argument value
 | 
						|
	 * @param x2 second argument value
 | 
						|
	 * @param delta increment for numerical derivative
 | 
						|
	 * @return m*n Jacobian computed via central differencing
 | 
						|
	 * All classes Y,X1,X2 need dim, expmap, logmap
 | 
						|
	 */
 | 
						|
	template<class Y, class X1, class X2>
 | 
						|
	Matrix numericalDerivative21(boost::function<Y(const X1&, const X2&)> h,
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		Y hx = h(x1,x2);
 | 
						|
		double factor = 1.0/(2.0*delta);
 | 
						|
		const size_t m = hx.dim(), n = x1.dim();
 | 
						|
		Vector d(n,0.0);
 | 
						|
		Matrix H = zeros(m,n);
 | 
						|
		for (size_t j=0;j<n;j++) {
 | 
						|
			d(j) +=   delta; Vector hxplus = hx.logmap(h(x1.expmap(d),x2));
 | 
						|
			d(j) -= 2*delta; Vector hxmin  = hx.logmap(h(x1.expmap(d),x2));
 | 
						|
			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor;
 | 
						|
			for (size_t i=0;i<m;i++) H(i,j) = dh(i);
 | 
						|
		}
 | 
						|
		return H;
 | 
						|
	}
 | 
						|
 | 
						|
	/** use a raw C++ function pointer */
 | 
						|
	template<class Y, class X1, class X2>
 | 
						|
	inline Matrix numericalDerivative21(Y (*h)(const X1&, const X2&),
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		return numericalDerivative21<Y,X1,X2>(boost::bind(h, _1, _2), x1, x2, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** pseudo-partial template specialization for double return values */
 | 
						|
	template<class X1, class X2>
 | 
						|
	Matrix numericalDerivative21(boost::function<double(const X1&, const X2&)> h,
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		return numericalDerivative21<LieVector,X1,X2>(
 | 
						|
				boost::bind(makeLieVectorD, boost::bind(h, _1, _2)), x1, x2, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X1, class X2>
 | 
						|
	Matrix numericalDerivative21(double (*h)(const X1&, const X2&),
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		return numericalDerivative21<LieVector,X1,X2>(
 | 
						|
				boost::bind(makeLieVectorD, boost::bind(h, _1, _2)), x1, x2, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** pseudo-partial template specialization for vector return values */
 | 
						|
	template<class X1, class X2>
 | 
						|
	Matrix numericalDerivative21(boost::function<Vector(const X1&, const X2&)> h,
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		return numericalDerivative21<LieVector,X1,X2>(
 | 
						|
				boost::bind(makeLieVector, boost::bind(h, _1, _2)), x1, x2, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X1, class X2>
 | 
						|
	inline Matrix numericalDerivative21(Vector (*h)(const X1&, const X2&),
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		return numericalDerivative21<LieVector,X1,X2>(
 | 
						|
				boost::bind(makeLieVector, boost::bind(h, _1, _2)), x1, x2, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Compute numerical derivative in argument 2 of binary function
 | 
						|
	 * @param h binary function yielding m-vector
 | 
						|
	 * @param x1 first argument value
 | 
						|
	 * @param x2 n-dimensional second argument value
 | 
						|
	 * @param delta increment for numerical derivative
 | 
						|
	 * @return m*n Jacobian computed via central differencing
 | 
						|
	 * All classes Y,X1,X2 need dim, expmap, logmap
 | 
						|
	 */
 | 
						|
	template<class Y, class X1, class X2>
 | 
						|
	Matrix numericalDerivative22
 | 
						|
	(boost::function<Y(const X1&, const X2&)> h,
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		Y hx = h(x1,x2);
 | 
						|
		double factor = 1.0/(2.0*delta);
 | 
						|
		const size_t m = hx.dim(), n = x2.dim();
 | 
						|
		Vector d(n,0.0);
 | 
						|
		Matrix H = zeros(m,n);
 | 
						|
		for (size_t j=0;j<n;j++) {
 | 
						|
			d(j) +=   delta; Vector hxplus = hx.logmap(h(x1,x2.expmap(d)));
 | 
						|
			d(j) -= 2*delta; Vector hxmin  = hx.logmap(h(x1,x2.expmap(d)));
 | 
						|
			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor;
 | 
						|
			for (size_t i=0;i<m;i++) H(i,j) = dh(i);
 | 
						|
		}
 | 
						|
		return H;
 | 
						|
	}
 | 
						|
 | 
						|
	/** use a raw C++ function pointer */
 | 
						|
	template<class Y, class X1, class X2>
 | 
						|
	inline Matrix numericalDerivative22
 | 
						|
	(Y (*h)(const X1&, const X2&), const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		return numericalDerivative22<Y,X1,X2>(boost::bind(h, _1, _2), x1, x2, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** pseudo-partial template specialization for double return values */
 | 
						|
	template<class X1, class X2>
 | 
						|
	Matrix numericalDerivative22(boost::function<double(const X1&, const X2&)> h,
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		return numericalDerivative22<LieVector,X1,X2>(
 | 
						|
				boost::bind(makeLieVectorD, boost::bind(h, _1, _2)), x1, x2, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X1, class X2>
 | 
						|
	inline Matrix numericalDerivative22(double (*h)(const X1&, const X2&),
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		return numericalDerivative22<LieVector,X1,X2>(
 | 
						|
				boost::bind(makeLieVectorD, boost::bind(h, _1, _2)), x1, x2, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** pseudo-partial template specialization for vector return values */
 | 
						|
	template<class X1, class X2>
 | 
						|
	Matrix numericalDerivative22(boost::function<Vector(const X1&, const X2&)> h,
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		return numericalDerivative22<LieVector,X1,X2>(
 | 
						|
				boost::bind(makeLieVector, boost::bind(h, _1, _2)), x1, x2, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X1, class X2>
 | 
						|
	inline Matrix numericalDerivative22(Vector (*h)(const X1&, const X2&),
 | 
						|
			const X1& x1, const X2& x2, double delta=1e-5) {
 | 
						|
		return numericalDerivative22<LieVector,X1,X2>(
 | 
						|
				boost::bind(makeLieVector, boost::bind(h, _1, _2)), x1, x2, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Compute numerical derivative in argument 1 of ternary function
 | 
						|
	 * @param h ternary function yielding m-vector
 | 
						|
	 * @param x1 n-dimensional first argument value
 | 
						|
	 * @param x2 second argument value
 | 
						|
	 * @param x3 third argument value
 | 
						|
	 * @param delta increment for numerical derivative
 | 
						|
	 * @return m*n Jacobian computed via central differencing
 | 
						|
	 * All classes Y,X1,X2,X3 need dim, expmap, logmap
 | 
						|
	 */
 | 
						|
	template<class Y, class X1, class X2, class X3>
 | 
						|
	Matrix numericalDerivative31
 | 
						|
	(boost::function<Y(const X1&, const X2&, const X3&)> h,
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5)
 | 
						|
	{
 | 
						|
		Y hx = h(x1,x2,x3);
 | 
						|
		double factor = 1.0/(2.0*delta);
 | 
						|
		const size_t m = hx.dim(), n = x1.dim();
 | 
						|
		Vector d(n,0.0);
 | 
						|
		Matrix H = zeros(m,n);
 | 
						|
		for (size_t j=0;j<n;j++) {
 | 
						|
			d(j) +=   delta; Vector hxplus = hx.logmap(h(x1.expmap(d),x2,x3));
 | 
						|
			d(j) -= 2*delta; Vector hxmin  = hx.logmap(h(x1.expmap(d),x2,x3));
 | 
						|
			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor;
 | 
						|
			for (size_t i=0;i<m;i++) H(i,j) = dh(i);
 | 
						|
		}
 | 
						|
		return H;
 | 
						|
	}
 | 
						|
	template<class Y, class X1, class X2, class X3>
 | 
						|
	inline Matrix numericalDerivative31
 | 
						|
	(Y (*h)(const X1&, const X2&, const X3&),
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative31<Y,X1,X2, X3>(boost::bind(h, _1, _2, _3), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** pseudo-partial template specialization for double return values */
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	Matrix numericalDerivative31(boost::function<double(const X1&, const X2&, const X3&)> h,
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative31<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVectorD, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	inline Matrix numericalDerivative31(double (*h)(const X1&, const X2&, const X3&),
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative31<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVectorD, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** pseudo-partial template specialization for vector return values */
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	Matrix numericalDerivative31(boost::function<Vector(const X1&, const X2&, const X3&)> h,
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative31<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVector, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	inline Matrix numericalDerivative31(Vector (*h)(const X1&, const X2&, const X3&),
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative31<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVector, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Compute numerical derivative in argument 2 of ternary function
 | 
						|
	 * @param h ternary function yielding m-vector
 | 
						|
	 * @param x1 n-dimensional first argument value
 | 
						|
	 * @param x2 second argument value
 | 
						|
	 * @param x3 third argument value
 | 
						|
	 * @param delta increment for numerical derivative
 | 
						|
	 * @return m*n Jacobian computed via central differencing
 | 
						|
	 * All classes Y,X1,X2,X3 need dim, expmap, logmap
 | 
						|
	 */
 | 
						|
	template<class Y, class X1, class X2, class X3>
 | 
						|
	Matrix numericalDerivative32
 | 
						|
	(boost::function<Y(const X1&, const X2&, const X3&)> h,
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5)
 | 
						|
	{
 | 
						|
		Y hx = h(x1,x2,x3);
 | 
						|
		double factor = 1.0/(2.0*delta);
 | 
						|
		const size_t m = hx.dim(), n = x2.dim();
 | 
						|
		Vector d(n,0.0);
 | 
						|
		Matrix H = zeros(m,n);
 | 
						|
		for (size_t j=0;j<n;j++) {
 | 
						|
			d(j) +=   delta; Vector hxplus = hx.logmap(h(x1, x2.expmap(d),x3));
 | 
						|
			d(j) -= 2*delta; Vector hxmin  = hx.logmap(h(x1, x2.expmap(d),x3));
 | 
						|
			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor;
 | 
						|
			for (size_t i=0;i<m;i++) H(i,j) = dh(i);
 | 
						|
		}
 | 
						|
		return H;
 | 
						|
	}
 | 
						|
	template<class Y, class X1, class X2, class X3>
 | 
						|
	inline Matrix numericalDerivative32
 | 
						|
	(Y (*h)(const X1&, const X2&, const X3&),
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative32<Y,X1,X2, X3>(boost::bind(h, _1, _2, _3), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** pseudo-partial template specialization for double return values */
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	Matrix numericalDerivative32(boost::function<double(const X1&, const X2&, const X3&)> h,
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative32<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVectorD, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	inline Matrix numericalDerivative32(double (*h)(const X1&, const X2&, const X3&),
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative32<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVectorD, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** pseudo-partial template specialization for vector return values */
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	Matrix numericalDerivative32(boost::function<Vector(const X1&, const X2&, const X3&)> h,
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative32<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVector, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	inline Matrix numericalDerivative32(Vector (*h)(const X1&, const X2&, const X3&),
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative32<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVector, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Compute numerical derivative in argument 3 of ternary function
 | 
						|
	 * @param h ternary function yielding m-vector
 | 
						|
	 * @param x1 n-dimensional first argument value
 | 
						|
	 * @param x2 second argument value
 | 
						|
	 * @param x3 third argument value
 | 
						|
	 * @param delta increment for numerical derivative
 | 
						|
	 * @return m*n Jacobian computed via central differencing
 | 
						|
	 * All classes Y,X1,X2,X3 need dim, expmap, logmap
 | 
						|
	 */
 | 
						|
	template<class Y, class X1, class X2, class X3>
 | 
						|
	Matrix numericalDerivative33
 | 
						|
	(boost::function<Y(const X1&, const X2&, const X3&)> h,
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5)
 | 
						|
	{
 | 
						|
		Y hx = h(x1,x2,x3);
 | 
						|
		double factor = 1.0/(2.0*delta);
 | 
						|
		const size_t m = hx.dim(), n = x3.dim();
 | 
						|
		Vector d(n,0.0);
 | 
						|
		Matrix H = zeros(m,n);
 | 
						|
		for (size_t j=0;j<n;j++) {
 | 
						|
			d(j) +=   delta; Vector hxplus = hx.logmap(h(x1, x2, x3.expmap(d)));
 | 
						|
			d(j) -= 2*delta; Vector hxmin  = hx.logmap(h(x1, x2, x3.expmap(d)));
 | 
						|
			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor;
 | 
						|
			for (size_t i=0;i<m;i++) H(i,j) = dh(i);
 | 
						|
		}
 | 
						|
		return H;
 | 
						|
	}
 | 
						|
	template<class Y, class X1, class X2, class X3>
 | 
						|
	inline Matrix numericalDerivative33
 | 
						|
	(Y (*h)(const X1&, const X2&, const X3&),
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative33<Y,X1,X2, X3>(boost::bind(h, _1, _2, _3), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** pseudo-partial template specialization for double return values */
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	Matrix numericalDerivative33(boost::function<double(const X1&, const X2&, const X3&)> h,
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative33<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVectorD, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	inline Matrix numericalDerivative33(double (*h)(const X1&, const X2&, const X3&),
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative33<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVectorD, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	/** pseudo-partial template specialization for vector return values */
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	Matrix numericalDerivative33(boost::function<Vector(const X1&, const X2&, const X3&)> h,
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative33<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVector, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class X1, class X2, class X3>
 | 
						|
	inline Matrix numericalDerivative33(Vector (*h)(const X1&, const X2&, const X3&),
 | 
						|
			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) {
 | 
						|
		return numericalDerivative33<LieVector,X1,X2,X3>(
 | 
						|
				boost::bind(makeLieVector, boost::bind(h, _1, _2, _3)), x1, x2, x3, delta);
 | 
						|
	}
 | 
						|
 | 
						|
}
 |