526 lines
17 KiB
C++
526 lines
17 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file Rot3.h
|
|
* @brief 3D rotation represented as a rotation matrix or quaternion
|
|
* @author Alireza Fathi
|
|
* @author Christian Potthast
|
|
* @author Frank Dellaert
|
|
* @author Richard Roberts
|
|
* @author Luca Carlone
|
|
*/
|
|
// \callgraph
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/geometry/Unit3.h>
|
|
#include <gtsam/geometry/Quaternion.h>
|
|
#include <gtsam/geometry/SO3.h>
|
|
#include <gtsam/base/concepts.h>
|
|
#include <gtsam/config.h> // Get GTSAM_USE_QUATERNIONS macro
|
|
|
|
// You can override the default coordinate mode using this flag
|
|
#ifndef ROT3_DEFAULT_COORDINATES_MODE
|
|
#ifdef GTSAM_USE_QUATERNIONS
|
|
// Exponential map is very cheap for quaternions
|
|
#define ROT3_DEFAULT_COORDINATES_MODE Rot3::EXPMAP
|
|
#else
|
|
// If user doesn't require GTSAM_ROT3_EXPMAP in cmake when building
|
|
#ifndef GTSAM_ROT3_EXPMAP
|
|
// For rotation matrices, the Cayley transform is a fast retract alternative
|
|
#define ROT3_DEFAULT_COORDINATES_MODE Rot3::CAYLEY
|
|
#else
|
|
#define ROT3_DEFAULT_COORDINATES_MODE Rot3::EXPMAP
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* @brief A 3D rotation represented as a rotation matrix if the preprocessor
|
|
* symbol GTSAM_USE_QUATERNIONS is not defined, or as a quaternion if it
|
|
* is defined.
|
|
* @addtogroup geometry
|
|
* \nosubgrouping
|
|
*/
|
|
class GTSAM_EXPORT Rot3 : public LieGroup<Rot3,3> {
|
|
|
|
private:
|
|
|
|
#ifdef GTSAM_USE_QUATERNIONS
|
|
/** Internal Eigen Quaternion */
|
|
gtsam::Quaternion quaternion_;
|
|
#else
|
|
Matrix3 rot_;
|
|
#endif
|
|
|
|
public:
|
|
|
|
/// @name Constructors and named constructors
|
|
/// @{
|
|
|
|
/** default constructor, unit rotation */
|
|
Rot3();
|
|
|
|
/**
|
|
* Constructor from *columns*
|
|
* @param r1 X-axis of rotated frame
|
|
* @param r2 Y-axis of rotated frame
|
|
* @param r3 Z-axis of rotated frame
|
|
*/
|
|
Rot3(const Point3& col1, const Point3& col2, const Point3& col3);
|
|
|
|
/** constructor from a rotation matrix, as doubles in *row-major* order !!! */
|
|
Rot3(double R11, double R12, double R13,
|
|
double R21, double R22, double R23,
|
|
double R31, double R32, double R33);
|
|
|
|
/**
|
|
* Constructor from a rotation matrix
|
|
* Version for generic matrices. Need casting to Matrix3
|
|
* in quaternion mode, since Eigen's quaternion doesn't
|
|
* allow assignment/construction from a generic matrix.
|
|
* See: http://stackoverflow.com/questions/27094132/cannot-understand-if-this-is-circular-dependency-or-clang#tab-top
|
|
*/
|
|
template<typename Derived>
|
|
inline explicit Rot3(const Eigen::MatrixBase<Derived>& R) {
|
|
#ifdef GTSAM_USE_QUATERNIONS
|
|
quaternion_=Matrix3(R);
|
|
#else
|
|
rot_ = R;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Constructor from a rotation matrix
|
|
* Overload version for Matrix3 to avoid casting in quaternion mode.
|
|
*/
|
|
inline explicit Rot3(const Matrix3& R) {
|
|
#ifdef GTSAM_USE_QUATERNIONS
|
|
quaternion_=R;
|
|
#else
|
|
rot_ = R;
|
|
#endif
|
|
}
|
|
|
|
/** Constructor from a quaternion. This can also be called using a plain
|
|
* Vector, due to implicit conversion from Vector to Quaternion
|
|
* @param q The quaternion
|
|
*/
|
|
Rot3(const Quaternion& q);
|
|
|
|
/// Random, generates a random axis, then random angle \in [-p,pi]
|
|
static Rot3 Random(boost::mt19937 & rng);
|
|
|
|
/** Virtual destructor */
|
|
virtual ~Rot3() {}
|
|
|
|
/* Static member function to generate some well known rotations */
|
|
|
|
/// Rotation around X axis as in http://en.wikipedia.org/wiki/Rotation_matrix, counterclockwise when looking from unchanging axis.
|
|
static Rot3 Rx(double t);
|
|
|
|
/// Rotation around Y axis as in http://en.wikipedia.org/wiki/Rotation_matrix, counterclockwise when looking from unchanging axis.
|
|
static Rot3 Ry(double t);
|
|
|
|
/// Rotation around Z axis as in http://en.wikipedia.org/wiki/Rotation_matrix, counterclockwise when looking from unchanging axis.
|
|
static Rot3 Rz(double t);
|
|
|
|
/// Rotations around Z, Y, then X axes as in http://en.wikipedia.org/wiki/Rotation_matrix, counterclockwise when looking from unchanging axis.
|
|
static Rot3 RzRyRx(double x, double y, double z);
|
|
|
|
/// Rotations around Z, Y, then X axes as in http://en.wikipedia.org/wiki/Rotation_matrix, counterclockwise when looking from unchanging axis.
|
|
inline static Rot3 RzRyRx(const Vector& xyz) {
|
|
assert(xyz.size() == 3);
|
|
return RzRyRx(xyz(0), xyz(1), xyz(2));
|
|
}
|
|
|
|
/// Positive yaw is to right (as in aircraft heading). See ypr
|
|
static Rot3 Yaw (double t) { return Rz(t); }
|
|
|
|
/// Positive pitch is up (increasing aircraft altitude).See ypr
|
|
static Rot3 Pitch(double t) { return Ry(t); }
|
|
|
|
//// Positive roll is to right (increasing yaw in aircraft).
|
|
static Rot3 Roll (double t) { return Rx(t); }
|
|
|
|
/**
|
|
* Returns rotation nRb from body to nav frame.
|
|
* Positive yaw is to right (as in aircraft heading).
|
|
* Positive pitch is up (increasing aircraft altitude).
|
|
* Positive roll is to right (increasing yaw in aircraft).
|
|
* Tait-Bryan system from Spatial Reference Model (SRM) (x,y,z) = (roll,pitch,yaw)
|
|
* as described in http://www.sedris.org/wg8home/Documents/WG80462.pdf.
|
|
* Assumes vehicle coordinate frame X forward, Y right, Z down.
|
|
*/
|
|
static Rot3 Ypr(double y, double p, double r) { return RzRyRx(r,p,y);}
|
|
|
|
/** Create from Quaternion coefficients */
|
|
static Rot3 Quaternion(double w, double x, double y, double z) {
|
|
gtsam::Quaternion q(w, x, y, z);
|
|
return Rot3(q);
|
|
}
|
|
|
|
/**
|
|
* Convert from axis/angle representation
|
|
* @param axisw is the rotation axis, unit length
|
|
* @param angle rotation angle
|
|
* @return incremental rotation
|
|
*/
|
|
static Rot3 AxisAngle(const Point3& axis, double angle) {
|
|
#ifdef GTSAM_USE_QUATERNIONS
|
|
return gtsam::Quaternion(Eigen::AngleAxis<double>(angle, axis.vector()));
|
|
#else
|
|
return Rot3(SO3::AxisAngle(axis,angle));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Convert from axis/angle representation
|
|
* @param axis is the rotation axis
|
|
* @param angle rotation angle
|
|
* @return incremental rotation
|
|
*/
|
|
static Rot3 AxisAngle(const Unit3& axis, double angle) {
|
|
return AxisAngle(axis.unitVector(),angle);
|
|
}
|
|
|
|
/**
|
|
* Rodrigues' formula to compute an incremental rotation
|
|
* @param w a vector of incremental roll,pitch,yaw
|
|
* @return incremental rotation
|
|
*/
|
|
static Rot3 Rodrigues(const Vector3& w) {
|
|
return Rot3::Expmap(w);
|
|
}
|
|
|
|
/**
|
|
* Rodrigues' formula to compute an incremental rotation
|
|
* @param wx Incremental roll (about X)
|
|
* @param wy Incremental pitch (about Y)
|
|
* @param wz Incremental yaw (about Z)
|
|
* @return incremental rotation
|
|
*/
|
|
static Rot3 Rodrigues(double wx, double wy, double wz) {
|
|
return Rodrigues(Vector3(wx, wy, wz));
|
|
}
|
|
|
|
/// Determine a rotation to bring two vectors into alignment, using the rotation axis provided
|
|
static Rot3 AlignPair(const Unit3& axis, const Unit3& a_p, const Unit3& b_p);
|
|
|
|
/// Calculate rotation from two pairs of homogeneous points using two successive rotations
|
|
static Rot3 AlignTwoPairs(const Unit3& a_p, const Unit3& b_p, //
|
|
const Unit3& a_q, const Unit3& b_q);
|
|
|
|
/// @}
|
|
/// @name Testable
|
|
/// @{
|
|
|
|
/** print */
|
|
void print(const std::string& s="R") const;
|
|
|
|
/** equals with an tolerance */
|
|
bool equals(const Rot3& p, double tol = 1e-9) const;
|
|
|
|
/// @}
|
|
/// @name Group
|
|
/// @{
|
|
|
|
/// identity rotation for group operation
|
|
inline static Rot3 identity() {
|
|
return Rot3();
|
|
}
|
|
|
|
/// Syntatic sugar for composing two rotations
|
|
Rot3 operator*(const Rot3& R2) const;
|
|
|
|
/// inverse of a rotation, TODO should be different for M/Q
|
|
Rot3 inverse() const {
|
|
return Rot3(Matrix3(transpose()));
|
|
}
|
|
|
|
/**
|
|
* Conjugation: given a rotation acting in frame B, compute rotation c1Rc2 acting in a frame C
|
|
* @param cRb rotation from B frame to C frame
|
|
* @return c1Rc2 = cRb * b1Rb2 * cRb'
|
|
*/
|
|
Rot3 conjugate(const Rot3& cRb) const {
|
|
// TODO: do more efficiently by using Eigen or quaternion properties
|
|
return cRb * (*this) * cRb.inverse();
|
|
}
|
|
|
|
/// @}
|
|
/// @name Manifold
|
|
/// @{
|
|
|
|
/**
|
|
* The method retract() is used to map from the tangent space back to the manifold.
|
|
* Its inverse, is localCoordinates(). For Lie groups, an obvious retraction is the
|
|
* exponential map, but this can be expensive to compute. The following Enum is used
|
|
* to indicate which method should be used. The default
|
|
* is determined by ROT3_DEFAULT_COORDINATES_MODE, which may be set at compile time,
|
|
* and itself defaults to Rot3::CAYLEY, or if GTSAM_USE_QUATERNIONS is defined,
|
|
* to Rot3::EXPMAP.
|
|
*/
|
|
enum CoordinatesMode {
|
|
EXPMAP, ///< Use the Lie group exponential map to retract
|
|
#ifndef GTSAM_USE_QUATERNIONS
|
|
CAYLEY, ///< Retract and localCoordinates using the Cayley transform.
|
|
#endif
|
|
};
|
|
|
|
#ifndef GTSAM_USE_QUATERNIONS
|
|
|
|
// Cayley chart around origin
|
|
struct CayleyChart {
|
|
static Rot3 Retract(const Vector3& v, OptionalJacobian<3, 3> H = boost::none);
|
|
static Vector3 Local(const Rot3& r, OptionalJacobian<3, 3> H = boost::none);
|
|
};
|
|
|
|
/// Retraction from R^3 to Rot3 manifold using the Cayley transform
|
|
Rot3 retractCayley(const Vector& omega) const {
|
|
return compose(CayleyChart::Retract(omega));
|
|
}
|
|
|
|
/// Inverse of retractCayley
|
|
Vector3 localCayley(const Rot3& other) const {
|
|
return CayleyChart::Local(between(other));
|
|
}
|
|
|
|
#endif
|
|
|
|
/// @}
|
|
/// @name Lie Group
|
|
/// @{
|
|
|
|
/**
|
|
* Exponential map at identity - create a rotation from canonical coordinates
|
|
* \f$ [R_x,R_y,R_z] \f$ using Rodrigues' formula
|
|
*/
|
|
static Rot3 Expmap(const Vector3& v, OptionalJacobian<3,3> H = boost::none) {
|
|
if(H) *H = Rot3::ExpmapDerivative(v);
|
|
#ifdef GTSAM_USE_QUATERNIONS
|
|
return traits<gtsam::Quaternion>::Expmap(v);
|
|
#else
|
|
return Rot3(traits<SO3>::Expmap(v));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Log map at identity - returns the canonical coordinates
|
|
* \f$ [R_x,R_y,R_z] \f$ of this rotation
|
|
*/
|
|
static Vector3 Logmap(const Rot3& R, OptionalJacobian<3,3> H = boost::none);
|
|
|
|
/// Derivative of Expmap
|
|
static Matrix3 ExpmapDerivative(const Vector3& x);
|
|
|
|
/// Derivative of Logmap
|
|
static Matrix3 LogmapDerivative(const Vector3& x);
|
|
|
|
/** Calculate Adjoint map */
|
|
Matrix3 AdjointMap() const { return matrix(); }
|
|
|
|
// Chart at origin, depends on compile-time flag ROT3_DEFAULT_COORDINATES_MODE
|
|
struct ChartAtOrigin {
|
|
static Rot3 Retract(const Vector3& v, ChartJacobian H = boost::none);
|
|
static Vector3 Local(const Rot3& r, ChartJacobian H = boost::none);
|
|
};
|
|
|
|
using LieGroup<Rot3, 3>::inverse; // version with derivative
|
|
|
|
/// @}
|
|
/// @name Group Action on Point3
|
|
/// @{
|
|
|
|
/**
|
|
* rotate point from rotated coordinate frame to world \f$ p^w = R_c^w p^c \f$
|
|
*/
|
|
Point3 rotate(const Point3& p, OptionalJacobian<3,3> H1 = boost::none,
|
|
OptionalJacobian<3,3> H2 = boost::none) const;
|
|
|
|
/// rotate point from rotated coordinate frame to world = R*p
|
|
Point3 operator*(const Point3& p) const;
|
|
|
|
/// rotate point from world to rotated frame \f$ p^c = (R_c^w)^T p^w \f$
|
|
Point3 unrotate(const Point3& p, OptionalJacobian<3,3> H1 = boost::none,
|
|
OptionalJacobian<3,3> H2=boost::none) const;
|
|
|
|
/// @}
|
|
/// @name Group Action on Unit3
|
|
/// @{
|
|
|
|
/// rotate 3D direction from rotated coordinate frame to world frame
|
|
Unit3 rotate(const Unit3& p, OptionalJacobian<2,3> HR = boost::none,
|
|
OptionalJacobian<2,2> Hp = boost::none) const;
|
|
|
|
/// unrotate 3D direction from world frame to rotated coordinate frame
|
|
Unit3 unrotate(const Unit3& p, OptionalJacobian<2,3> HR = boost::none,
|
|
OptionalJacobian<2,2> Hp = boost::none) const;
|
|
|
|
/// rotate 3D direction from rotated coordinate frame to world frame
|
|
Unit3 operator*(const Unit3& p) const;
|
|
|
|
/// @}
|
|
/// @name Standard Interface
|
|
/// @{
|
|
|
|
/** return 3*3 rotation matrix */
|
|
Matrix3 matrix() const;
|
|
|
|
/**
|
|
* Return 3*3 transpose (inverse) rotation matrix
|
|
*/
|
|
Matrix3 transpose() const;
|
|
// TODO: const Eigen::Transpose<const Matrix3> transpose() const;
|
|
|
|
/// @deprecated, this is base 1, and was just confusing
|
|
Point3 column(int index) const;
|
|
|
|
Point3 r1() const; ///< first column
|
|
Point3 r2() const; ///< second column
|
|
Point3 r3() const; ///< third column
|
|
|
|
/**
|
|
* Use RQ to calculate xyz angle representation
|
|
* @return a vector containing x,y,z s.t. R = Rot3::RzRyRx(x,y,z)
|
|
*/
|
|
Vector3 xyz() const;
|
|
|
|
/**
|
|
* Use RQ to calculate yaw-pitch-roll angle representation
|
|
* @return a vector containing ypr s.t. R = Rot3::Ypr(y,p,r)
|
|
*/
|
|
Vector3 ypr() const;
|
|
|
|
/**
|
|
* Use RQ to calculate roll-pitch-yaw angle representation
|
|
* @return a vector containing ypr s.t. R = Rot3::Ypr(y,p,r)
|
|
*/
|
|
Vector3 rpy() const;
|
|
|
|
/**
|
|
* Accessor to get to component of angle representations
|
|
* NOTE: these are not efficient to get to multiple separate parts,
|
|
* you should instead use xyz() or ypr()
|
|
* TODO: make this more efficient
|
|
*/
|
|
inline double roll() const { return ypr()(2); }
|
|
|
|
/**
|
|
* Accessor to get to component of angle representations
|
|
* NOTE: these are not efficient to get to multiple separate parts,
|
|
* you should instead use xyz() or ypr()
|
|
* TODO: make this more efficient
|
|
*/
|
|
inline double pitch() const { return ypr()(1); }
|
|
|
|
/**
|
|
* Accessor to get to component of angle representations
|
|
* NOTE: these are not efficient to get to multiple separate parts,
|
|
* you should instead use xyz() or ypr()
|
|
* TODO: make this more efficient
|
|
*/
|
|
inline double yaw() const { return ypr()(0); }
|
|
|
|
/// @}
|
|
/// @name Advanced Interface
|
|
/// @{
|
|
|
|
/** Compute the quaternion representation of this rotation.
|
|
* @return The quaternion
|
|
*/
|
|
gtsam::Quaternion toQuaternion() const;
|
|
|
|
/**
|
|
* Converts to a generic matrix to allow for use with matlab
|
|
* In format: w x y z
|
|
*/
|
|
Vector quaternion() const;
|
|
|
|
/**
|
|
* @brief Spherical Linear intERPolation between *this and other
|
|
* @param s a value between 0 and 1
|
|
* @param other final point of iterpolation geodesic on manifold
|
|
*/
|
|
Rot3 slerp(double t, const Rot3& other) const;
|
|
|
|
/// Output stream operator
|
|
GTSAM_EXPORT friend std::ostream &operator<<(std::ostream &os, const Rot3& p);
|
|
|
|
/// @}
|
|
|
|
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V4
|
|
/// @name Deprecated
|
|
/// @{
|
|
static Rot3 rodriguez(const Point3& axis, double angle) { return AxisAngle(axis, angle); }
|
|
static Rot3 rodriguez(const Unit3& axis, double angle) { return AxisAngle(axis, angle); }
|
|
static Rot3 rodriguez(const Vector3& w) { return Rodrigues(w); }
|
|
static Rot3 rodriguez(double wx, double wy, double wz) { return Rodrigues(wx, wy, wz); }
|
|
static Rot3 yaw (double t) { return Yaw(t); }
|
|
static Rot3 pitch(double t) { return Pitch(t); }
|
|
static Rot3 roll (double t) { return Roll(t); }
|
|
static Rot3 ypr(double y, double p, double r) { return Ypr(r,p,y);}
|
|
static Rot3 quaternion(double w, double x, double y, double z) {
|
|
return Rot3::Quaternion(w, x, y, z);
|
|
}
|
|
/// @}
|
|
#endif
|
|
|
|
private:
|
|
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template<class ARCHIVE>
|
|
void serialize(ARCHIVE & ar, const unsigned int /*version*/)
|
|
{
|
|
#ifndef GTSAM_USE_QUATERNIONS
|
|
ar & boost::serialization::make_nvp("rot11", rot_(0,0));
|
|
ar & boost::serialization::make_nvp("rot12", rot_(0,1));
|
|
ar & boost::serialization::make_nvp("rot13", rot_(0,2));
|
|
ar & boost::serialization::make_nvp("rot21", rot_(1,0));
|
|
ar & boost::serialization::make_nvp("rot22", rot_(1,1));
|
|
ar & boost::serialization::make_nvp("rot23", rot_(1,2));
|
|
ar & boost::serialization::make_nvp("rot31", rot_(2,0));
|
|
ar & boost::serialization::make_nvp("rot32", rot_(2,1));
|
|
ar & boost::serialization::make_nvp("rot33", rot_(2,2));
|
|
#else
|
|
ar & boost::serialization::make_nvp("w", quaternion_.w());
|
|
ar & boost::serialization::make_nvp("x", quaternion_.x());
|
|
ar & boost::serialization::make_nvp("y", quaternion_.y());
|
|
ar & boost::serialization::make_nvp("z", quaternion_.z());
|
|
#endif
|
|
}
|
|
|
|
};
|
|
|
|
/**
|
|
* [RQ] receives a 3 by 3 matrix and returns an upper triangular matrix R
|
|
* and 3 rotation angles corresponding to the rotation matrix Q=Qz'*Qy'*Qx'
|
|
* such that A = R*Q = R*Qz'*Qy'*Qx'. When A is a rotation matrix, R will
|
|
* be the identity and Q is a yaw-pitch-roll decomposition of A.
|
|
* The implementation uses Givens rotations and is based on Hartley-Zisserman.
|
|
* @param A 3 by 3 matrix A=RQ
|
|
* @return an upper triangular matrix R
|
|
* @return a vector [thetax, thetay, thetaz] in radians.
|
|
*/
|
|
GTSAM_EXPORT std::pair<Matrix3,Vector3> RQ(const Matrix3& A);
|
|
|
|
template<>
|
|
struct traits<Rot3> : public internal::LieGroup<Rot3> {};
|
|
|
|
template<>
|
|
struct traits<const Rot3> : public internal::LieGroup<Rot3> {};
|
|
}
|
|
|