229 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			229 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 *  @file   testGaussianFactor.cpp
 | 
						|
 *  @brief  Unit tests for Linear Factor
 | 
						|
 *  @author Christian Potthast
 | 
						|
 *  @author Frank Dellaert
 | 
						|
 **/
 | 
						|
 | 
						|
#include <tests/smallExample.h>
 | 
						|
#include <gtsam/nonlinear/Symbol.h>
 | 
						|
#include <gtsam/nonlinear/Ordering.h>
 | 
						|
#include <gtsam/linear/GaussianConditional.h>
 | 
						|
#include <gtsam/base/Matrix.h>
 | 
						|
#include <gtsam/base/Testable.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <boost/tuple/tuple.hpp>
 | 
						|
#include <boost/assign/std/list.hpp> // for operator +=
 | 
						|
#include <boost/assign/std/set.hpp>
 | 
						|
#include <boost/assign/std/map.hpp> // for insert
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
// Convenience for named keys
 | 
						|
using symbol_shorthand::X;
 | 
						|
using symbol_shorthand::L;
 | 
						|
 | 
						|
static SharedDiagonal
 | 
						|
  sigma0_1 = noiseModel::Isotropic::Sigma(2,0.1), sigma_02 = noiseModel::Isotropic::Sigma(2,0.2),
 | 
						|
  constraintModel = noiseModel::Constrained::All(2);
 | 
						|
 | 
						|
//const Key kx1 = X(1), kx2 = X(2), kl1 = L(1); // FIXME: throws exception
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, linearFactor )
 | 
						|
{
 | 
						|
  const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
 | 
						|
  Matrix I = eye(2);
 | 
						|
  Vector b = Vector_(2, 2.0, -1.0);
 | 
						|
  JacobianFactor expected(ordering[kx1], -10*I,ordering[kx2], 10*I, b, noiseModel::Unit::Create(2));
 | 
						|
 | 
						|
  // create a small linear factor graph
 | 
						|
  GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
  // get the factor kf2 from the factor graph
 | 
						|
  JacobianFactor::shared_ptr lf =
 | 
						|
      boost::dynamic_pointer_cast<JacobianFactor>(fg[1]);
 | 
						|
 | 
						|
  // check if the two factors are the same
 | 
						|
  EXPECT(assert_equal(expected,*lf));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, getDim )
 | 
						|
{
 | 
						|
  const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
 | 
						|
  // get a factor
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
  GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
 | 
						|
  GaussianFactor::shared_ptr factor = fg[0];
 | 
						|
 | 
						|
  // get the size of a variable
 | 
						|
  size_t actual = factor->getDim(factor->find(ordering[kx1]));
 | 
						|
 | 
						|
  // verify
 | 
						|
  size_t expected = 2;
 | 
						|
  EXPECT_LONGS_EQUAL(expected, actual);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, error )
 | 
						|
{
 | 
						|
  const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
 | 
						|
  // create a small linear factor graph
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
  GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
  // get the first factor from the factor graph
 | 
						|
  GaussianFactor::shared_ptr lf = fg[0];
 | 
						|
 | 
						|
  // check the error of the first factor with noisy config
 | 
						|
  VectorValues cfg = example::createZeroDelta(ordering);
 | 
						|
 | 
						|
  // calculate the error from the factor kf1
 | 
						|
  // note the error is the same as in testNonlinearFactor
 | 
						|
  double actual = lf->error(cfg);
 | 
						|
  DOUBLES_EQUAL( 1.0, actual, 0.00000001 );
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, matrix )
 | 
						|
{
 | 
						|
  const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
 | 
						|
  // create a small linear factor graph
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
  GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
  // get the factor kf2 from the factor graph
 | 
						|
  //GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version
 | 
						|
  Vector b2 = Vector_(2, 0.2, -0.1);
 | 
						|
  Matrix I = eye(2);
 | 
						|
  // render with a given ordering
 | 
						|
  Ordering ord;
 | 
						|
  ord += kx1,kx2;
 | 
						|
  JacobianFactor::shared_ptr lf(new JacobianFactor(ord[kx1], -I, ord[kx2], I, b2, sigma0_1));
 | 
						|
 | 
						|
  // Test whitened version
 | 
						|
  Matrix A_act1; Vector b_act1;
 | 
						|
  boost::tie(A_act1,b_act1) = lf->matrix(true);
 | 
						|
 | 
						|
  Matrix A1 = Matrix_(2,4,
 | 
						|
      -10.0,  0.0, 10.0,  0.0,
 | 
						|
      000.0,-10.0,  0.0, 10.0 );
 | 
						|
  Vector b1 = Vector_(2, 2.0, -1.0);
 | 
						|
 | 
						|
  EQUALITY(A_act1,A1);
 | 
						|
  EQUALITY(b_act1,b1);
 | 
						|
 | 
						|
  // Test unwhitened version
 | 
						|
  Matrix A_act2; Vector b_act2;
 | 
						|
  boost::tie(A_act2,b_act2) = lf->matrix(false);
 | 
						|
 | 
						|
 | 
						|
  Matrix A2 = Matrix_(2,4,
 | 
						|
      -1.0,  0.0, 1.0,  0.0,
 | 
						|
      000.0,-1.0,  0.0, 1.0 );
 | 
						|
  //Vector b2 = Vector_(2, 2.0, -1.0);
 | 
						|
 | 
						|
  EQUALITY(A_act2,A2);
 | 
						|
  EQUALITY(b_act2,b2);
 | 
						|
 | 
						|
  // Ensure that whitening is consistent
 | 
						|
  boost::shared_ptr<noiseModel::Gaussian> model = lf->get_model();
 | 
						|
  model->WhitenSystem(A_act2, b_act2);
 | 
						|
  EQUALITY(A_act1, A_act2);
 | 
						|
  EQUALITY(b_act1, b_act2);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, matrix_aug )
 | 
						|
{
 | 
						|
  const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
 | 
						|
  // create a small linear factor graph
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
  GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
  // get the factor kf2 from the factor graph
 | 
						|
  //GaussianFactor::shared_ptr lf = fg[1];
 | 
						|
  Vector b2 = Vector_(2, 0.2, -0.1);
 | 
						|
  Matrix I = eye(2);
 | 
						|
  // render with a given ordering
 | 
						|
  Ordering ord;
 | 
						|
  ord += kx1,kx2;
 | 
						|
  JacobianFactor::shared_ptr lf(new JacobianFactor(ord[kx1], -I, ord[kx2], I, b2, sigma0_1));
 | 
						|
 | 
						|
 | 
						|
  // Test unwhitened version
 | 
						|
  Matrix Ab_act1;
 | 
						|
  Ab_act1 = lf->matrix_augmented(false);
 | 
						|
 | 
						|
  Matrix Ab1 = Matrix_(2,5,
 | 
						|
      -1.0,  0.0, 1.0,  0.0,  0.2,
 | 
						|
      00.0,- 1.0, 0.0,  1.0, -0.1 );
 | 
						|
 | 
						|
  EQUALITY(Ab_act1,Ab1);
 | 
						|
 | 
						|
  // Test whitened version
 | 
						|
  Matrix Ab_act2;
 | 
						|
  Ab_act2 = lf->matrix_augmented(true);
 | 
						|
 | 
						|
  Matrix Ab2 = Matrix_(2,5,
 | 
						|
       -10.0,  0.0, 10.0,  0.0,  2.0,
 | 
						|
      00.0, -10.0,  0.0, 10.0, -1.0 );
 | 
						|
 | 
						|
  EQUALITY(Ab_act2,Ab2);
 | 
						|
 | 
						|
  // Ensure that whitening is consistent
 | 
						|
  boost::shared_ptr<noiseModel::Gaussian> model = lf->get_model();
 | 
						|
  model->WhitenInPlace(Ab_act1);
 | 
						|
  EQUALITY(Ab_act1, Ab_act2);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// small aux. function to print out lists of anything
 | 
						|
template<class T>
 | 
						|
void print(const list<T>& i) {
 | 
						|
  copy(i.begin(), i.end(), ostream_iterator<T> (cout, ","));
 | 
						|
  cout << endl;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, size )
 | 
						|
{
 | 
						|
  // create a linear factor graph
 | 
						|
  const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
  GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
  // get some factors from the graph
 | 
						|
  boost::shared_ptr<GaussianFactor> factor1 = fg[0];
 | 
						|
  boost::shared_ptr<GaussianFactor> factor2 = fg[1];
 | 
						|
  boost::shared_ptr<GaussianFactor> factor3 = fg[2];
 | 
						|
 | 
						|
  EXPECT_LONGS_EQUAL(1, factor1->size());
 | 
						|
  EXPECT_LONGS_EQUAL(2, factor2->size());
 | 
						|
  EXPECT_LONGS_EQUAL(2, factor3->size());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |