234 lines
7.1 KiB
C++
234 lines
7.1 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------1------------------------------------------- */
|
|
|
|
/**
|
|
* @file testExpression.cpp
|
|
* @date September 18, 2014
|
|
* @author Frank Dellaert
|
|
* @author Paul Furgale
|
|
* @brief unit tests for Block Automatic Differentiation
|
|
*/
|
|
|
|
#include <gtsam/geometry/PinholeCamera.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/geometry/Cal3_S2.h>
|
|
#include <gtsam_unstable/nonlinear/Expression.h>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/base/LieScalar.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <boost/assign/list_of.hpp>
|
|
using boost::assign::list_of;
|
|
using boost::assign::map_list_of;
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
template<class CAL>
|
|
Point2 uncalibrate(const CAL& K, const Point2& p,
|
|
boost::optional<Matrix25&> Dcal, boost::optional<Matrix2&> Dp) {
|
|
return K.uncalibrate(p, Dcal, Dp);
|
|
}
|
|
|
|
static const Rot3 someR = Rot3::RzRyRx(1, 2, 3);
|
|
|
|
/* ************************************************************************* */
|
|
// Constant
|
|
TEST(Expression, constant) {
|
|
Expression<Rot3> R(someR);
|
|
Values values;
|
|
JacobianMap actualMap;
|
|
Rot3 actual = R.value(values, actualMap);
|
|
EXPECT(assert_equal(someR, actual));
|
|
JacobianMap expected;
|
|
EXPECT(actualMap == expected);
|
|
EXPECT_LONGS_EQUAL(0, R.traceSize())
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Leaf
|
|
TEST(Expression, Leaf) {
|
|
Expression<Rot3> R(100);
|
|
Values values;
|
|
values.insert(100, someR);
|
|
|
|
JacobianMap expected;
|
|
Matrix H = eye(3);
|
|
expected.insert(make_pair(100, H.block(0, 0, 3, 3)));
|
|
|
|
JacobianMap actualMap2;
|
|
actualMap2.insert(make_pair(100, H.block(0, 0, 3, 3)));
|
|
Rot3 actual2 = R.reverse(values, actualMap2);
|
|
EXPECT(assert_equal(someR, actual2));
|
|
EXPECT(actualMap2 == expected);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Many Leaves
|
|
TEST(Expression, Leaves) {
|
|
Values values;
|
|
Point3 somePoint(1, 2, 3);
|
|
values.insert(Symbol('p', 10), somePoint);
|
|
std::vector<Expression<Point3> > points = createUnknowns<Point3>(10, 'p', 1);
|
|
EXPECT(assert_equal(somePoint,points.back().value(values)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
//TEST(Expression, NullaryMethod) {
|
|
// Expression<Point3> p(67);
|
|
// Expression<LieScalar> norm(p, &Point3::norm);
|
|
// Values values;
|
|
// values.insert(67,Point3(3,4,5));
|
|
// Augmented<LieScalar> a = norm.augmented(values);
|
|
// EXPECT(a.value() == sqrt(50));
|
|
// JacobianMap expected;
|
|
// expected[67] = (Matrix(1,3) << 3/sqrt(50),4/sqrt(50),5/sqrt(50));
|
|
// EXPECT(assert_equal(expected.at(67),a.jacobians().at(67)));
|
|
//}
|
|
/* ************************************************************************* */
|
|
// Binary(Leaf,Leaf)
|
|
namespace binary {
|
|
// Create leaves
|
|
Expression<Pose3> x(1);
|
|
Expression<Point3> p(2);
|
|
Expression<Point3> p_cam(x, &Pose3::transform_to, p);
|
|
}
|
|
/* ************************************************************************* */
|
|
// keys
|
|
TEST(Expression, BinaryKeys) {
|
|
set<Key> expected = list_of(1)(2);
|
|
EXPECT(expected == binary::p_cam.keys());
|
|
}
|
|
/* ************************************************************************* */
|
|
// dimensions
|
|
TEST(Expression, BinaryDimensions) {
|
|
map<Key, size_t> actual, expected = map_list_of<Key, size_t>(1, 6)(2, 3);
|
|
binary::p_cam.dims(actual);
|
|
EXPECT(actual==expected);
|
|
}
|
|
/* ************************************************************************* */
|
|
// dimensions
|
|
TEST(Expression, BinaryTraceSize) {
|
|
typedef BinaryExpression<Point3, Pose3, Point3> Binary;
|
|
size_t expectedTraceSize = sizeof(Binary::Record);
|
|
EXPECT_LONGS_EQUAL(expectedTraceSize, binary::p_cam.traceSize());
|
|
}
|
|
/* ************************************************************************* */
|
|
// Binary(Leaf,Unary(Binary(Leaf,Leaf)))
|
|
namespace tree {
|
|
using namespace binary;
|
|
// Create leaves
|
|
Expression<Cal3_S2> K(3);
|
|
|
|
// Create expression tree
|
|
Expression<Point2> projection(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
|
|
Expression<Point2> uv_hat(uncalibrate<Cal3_S2>, K, projection);
|
|
}
|
|
/* ************************************************************************* */
|
|
// keys
|
|
TEST(Expression, TreeKeys) {
|
|
set<Key> expected = list_of(1)(2)(3);
|
|
EXPECT(expected == tree::uv_hat.keys());
|
|
}
|
|
/* ************************************************************************* */
|
|
// dimensions
|
|
TEST(Expression, TreeDimensions) {
|
|
map<Key, size_t> actual, expected = map_list_of<Key, size_t>(1, 6)(2, 3)(3,
|
|
5);
|
|
tree::uv_hat.dims(actual);
|
|
EXPECT(actual==expected);
|
|
}
|
|
/* ************************************************************************* */
|
|
// TraceSize
|
|
TEST(Expression, TreeTraceSize) {
|
|
typedef UnaryExpression<Point2, Point3> Unary;
|
|
typedef BinaryExpression<Point3, Pose3, Point3> Binary1;
|
|
typedef BinaryExpression<Point2, Point2, Cal3_S2> Binary2;
|
|
size_t expectedTraceSize = sizeof(Unary::Record) + sizeof(Binary1::Record)
|
|
+ sizeof(Binary2::Record);
|
|
EXPECT_LONGS_EQUAL(expectedTraceSize, tree::uv_hat.traceSize());
|
|
}
|
|
/* ************************************************************************* */
|
|
|
|
TEST(Expression, compose1) {
|
|
|
|
// Create expression
|
|
Expression<Rot3> R1(1), R2(2);
|
|
Expression<Rot3> R3 = R1 * R2;
|
|
|
|
// Check keys
|
|
set<Key> expected = list_of(1)(2);
|
|
EXPECT(expected == R3.keys());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test compose with arguments referring to the same rotation
|
|
TEST(Expression, compose2) {
|
|
|
|
// Create expression
|
|
Expression<Rot3> R1(1), R2(1);
|
|
Expression<Rot3> R3 = R1 * R2;
|
|
|
|
// Check keys
|
|
set<Key> expected = list_of(1);
|
|
EXPECT(expected == R3.keys());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test compose with one arguments referring to constant rotation
|
|
TEST(Expression, compose3) {
|
|
|
|
// Create expression
|
|
Expression<Rot3> R1(Rot3::identity()), R2(3);
|
|
Expression<Rot3> R3 = R1 * R2;
|
|
|
|
// Check keys
|
|
set<Key> expected = list_of(3);
|
|
EXPECT(expected == R3.keys());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test with ternary function
|
|
Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3,
|
|
boost::optional<Matrix3&> H1, boost::optional<Matrix3&> H2,
|
|
boost::optional<Matrix3&> H3) {
|
|
// return dummy derivatives (not correct, but that's ok for testing here)
|
|
if (H1)
|
|
*H1 = eye(3);
|
|
if (H2)
|
|
*H2 = eye(3);
|
|
if (H3)
|
|
*H3 = eye(3);
|
|
return R1 * (R2 * R3);
|
|
}
|
|
|
|
TEST(Expression, ternary) {
|
|
|
|
// Create expression
|
|
Expression<Rot3> A(1), B(2), C(3);
|
|
Expression<Rot3> ABC(composeThree, A, B, C);
|
|
|
|
// Check keys
|
|
set<Key> expected = list_of(1)(2)(3);
|
|
EXPECT(expected == ABC.keys());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|