96 lines
2.8 KiB
C++
96 lines
2.8 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file UGM_chain.cpp
|
|
* @brief UGM (undirected graphical model) examples: chain
|
|
* @author Frank Dellaert
|
|
* @author Abhijit Kundu
|
|
*
|
|
* See http://www.di.ens.fr/~mschmidt/Software/UGM/chain.html
|
|
* for more explanation. This code demos the same example using GTSAM.
|
|
*/
|
|
|
|
#include <gtsam/base/timing.h>
|
|
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
|
#include <gtsam/discrete/DiscreteMarginals.h>
|
|
|
|
#include <iomanip>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
int main(int argc, char** argv) {
|
|
// Set Number of Nodes in the Graph
|
|
const int nrNodes = 60;
|
|
|
|
// Each node takes 1 of 7 possible states denoted by 0-6 in following order:
|
|
// ["VideoGames" "Industry" "GradSchool" "VideoGames(with PhD)"
|
|
// "Industry(with PhD)" "Academia" "Deceased"]
|
|
const size_t nrStates = 7;
|
|
|
|
// define variables
|
|
vector<DiscreteKey> nodes;
|
|
for (int i = 0; i < nrNodes; i++) {
|
|
DiscreteKey dk(i, nrStates);
|
|
nodes.push_back(dk);
|
|
}
|
|
|
|
// create graph
|
|
DiscreteFactorGraph graph;
|
|
|
|
// add node potentials
|
|
graph.add(nodes[0], ".3 .6 .1 0 0 0 0");
|
|
for (int i = 1; i < nrNodes; i++) graph.add(nodes[i], "1 1 1 1 1 1 1");
|
|
|
|
const std::string edgePotential =
|
|
".08 .9 .01 0 0 0 .01 "
|
|
".03 .95 .01 0 0 0 .01 "
|
|
".06 .06 .75 .05 .05 .02 .01 "
|
|
"0 0 0 .3 .6 .09 .01 "
|
|
"0 0 0 .02 .95 .02 .01 "
|
|
"0 0 0 .01 .01 .97 .01 "
|
|
"0 0 0 0 0 0 1";
|
|
|
|
// add edge potentials
|
|
for (int i = 0; i < nrNodes - 1; i++)
|
|
graph.add(nodes[i] & nodes[i + 1], edgePotential);
|
|
|
|
cout << "Created Factor Graph with " << nrNodes << " variable nodes and "
|
|
<< graph.size() << " factors (Unary+Edge).";
|
|
|
|
// "Decoding", i.e., configuration with largest value
|
|
// Uses max-product.
|
|
auto optimalDecoding = graph.optimize();
|
|
optimalDecoding.print("\nMost Probable Explanation (optimalDecoding)\n");
|
|
|
|
// "Inference" Computing marginals for each node
|
|
// Here we'll make use of DiscreteMarginals class, which makes use of
|
|
// bayes-tree based shortcut evaluation of marginals
|
|
DiscreteMarginals marginals(graph);
|
|
|
|
cout << "\nComputing Node Marginals ..(BayesTree based)" << endl;
|
|
gttic_(Multifrontal);
|
|
for (vector<DiscreteKey>::iterator it = nodes.begin(); it != nodes.end();
|
|
++it) {
|
|
// Compute the marginal
|
|
Vector margProbs = marginals.marginalProbabilities(*it);
|
|
|
|
// Print the marginals
|
|
cout << "Node#" << setw(4) << it->first << " : ";
|
|
print(margProbs);
|
|
}
|
|
gttoc_(Multifrontal);
|
|
|
|
tictoc_print_();
|
|
return 0;
|
|
}
|