gtsam/tests/testPreconditioner.cpp

364 lines
16 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testPreconditioner.cpp
* @brief Unit tests for Preconditioners
* @author Sungtae An
* @date Nov 6, 2014
**/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/Preconditioner.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/linear/PCGSolver.h>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
static GaussianFactorGraph createSimpleGaussianFactorGraph() {
GaussianFactorGraph fg;
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
fg += JacobianFactor(2, 10*eye(2), -1.0*ones(2), unit2);
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
fg += JacobianFactor(2, -10*eye(2), 0, 10*eye(2), (Vector(2) << 2.0, -1.0), unit2);
// measurement between x1 and l1: l1-x1=[0.0;0.2]
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vector(2) << 0.0, 1.0), unit2);
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vector(2) << -1.0, 1.5), unit2);
return fg;
}
/* ************************************************************************* */
static GaussianFactorGraph createSimpleGaussianFactorGraphUnordered() {
GaussianFactorGraph fg;
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_
fg += JacobianFactor(2, 10*eye(2), -1.0*ones(2), unit2);
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
fg += JacobianFactor(2, -10*eye(2), 1, 10*eye(2), (Vector(2) << 2.0, -1.0), unit2);
// measurement between x1 and l1: l1-x1=[0.0;0.2]
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vector(2) << 0.0, 1.0), unit2);
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vector(2) << -1.0, 1.5), unit2);
return fg;
}
/* ************************************************************************* */
// Copy of BlockJacobiPreconditioner::build
std::vector<Matrix> buildBlocks( const GaussianFactorGraph &gfg, const KeyInfo &keyInfo)
{
const size_t n = keyInfo.size();
std::vector<size_t> dims_ = keyInfo.colSpec();
/* prepare the buffer of block diagonals */
std::vector<Matrix> blocks; blocks.reserve(n);
/* allocate memory for the factorization of block diagonals */
size_t nnz = 0;
for ( size_t i = 0 ; i < n ; ++i ) {
const size_t dim = dims_[i];
blocks.push_back(Matrix::Zero(dim, dim));
// nnz += (((dim)*(dim+1)) >> 1); // d*(d+1) / 2 ;
nnz += dim*dim;
}
/* compute the block diagonal by scanning over the factors */
BOOST_FOREACH ( const GaussianFactor::shared_ptr &gf, gfg ) {
if ( JacobianFactor::shared_ptr jf = boost::dynamic_pointer_cast<JacobianFactor>(gf) ) {
for ( JacobianFactor::const_iterator it = jf->begin() ; it != jf->end() ; ++it ) {
const KeyInfoEntry &entry = keyInfo.find(*it)->second;
const Matrix &Ai = jf->getA(it);
blocks[entry.index()] += (Ai.transpose() * Ai);
}
}
else if ( HessianFactor::shared_ptr hf = boost::dynamic_pointer_cast<HessianFactor>(gf) ) {
for ( HessianFactor::const_iterator it = hf->begin() ; it != hf->end() ; ++it ) {
const KeyInfoEntry &entry = keyInfo.find(*it)->second;
const Matrix &Hii = hf->info(it, it).selfadjointView();
blocks[entry.index()] += Hii;
}
}
else {
throw invalid_argument("BlockJacobiPreconditioner::build gfg contains a factor that is neither a JacobianFactor nor a HessianFactor.");
}
}
return blocks;
}
/* *************************************************************************
TEST( Preconditioner, buildBlocks ) {
// Create simple Gaussian factor graph and initial values
GaussianFactorGraph gfg = createSimpleGaussianFactorGraph();
// Expected Hessian block diagonal matrices
std::map<Key, Matrix> expectedHessian =gfg.hessianBlockDiagonal();
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
std::vector<Matrix> actualHessian = buildBlocks(gfg, KeyInfo(gfg));
// Compare the number of block diagonal matrices
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
// Compare the values of matrices
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
for(; it1!=expectedHessian.end(); it1++, it2++)
EXPECT(assert_equal(it1->second, *it2));
}
/* *************************************************************************
TEST( Preconditioner, buildBlocks2 ) {
// Create simple Gaussian factor graph and initial values
GaussianFactorGraph gfg = createSimpleGaussianFactorGraphUnordered();
// Expected Hessian block diagonal matrices
std::map<Key, Matrix> expectedHessian =gfg.hessianBlockDiagonal();
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
std::vector<Matrix> actualHessian = buildBlocks(gfg, KeyInfo(gfg));
// Compare the number of block diagonal matrices
EXPECT_LONGS_EQUAL(expectedHessian.size(), 3);
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
// Compare the values of matrices
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
for(; it1!=expectedHessian.end(); it1++, it2++)
EXPECT(assert_equal(it1->second, *it2));
}
/* *************************************************************************
TEST( BlockJacobiPreconditioner, verySimpleLinerSystem) {
// Ax = [4 1][u] = [1] x0 = [2]
// [1 3][v] [2] [1]
//
// exact solution x = [1/11, 7/11]';
//
// Create a Gaussian Factor Graph
GaussianFactorGraph simpleGFG;
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 4, 1, 1, 3), (Vector(2) << 1,2 ), noiseModel::Unit::Create(2));
//simpleGFG.print("Factors\n");
// Expected Hessian block diagonal matrices
std::map<Key, Matrix> expectedHessian =simpleGFG.hessianBlockDiagonal();
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
std::vector<Matrix> actualHessian = buildBlocks(simpleGFG, KeyInfo(simpleGFG));
// Compare the number of block diagonal matrices
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
// Compare the values of matrices
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
// the function 'build' in BlockJacobianPreconditioner stores in 'buffer'
// the cholesky decomposion of each block of the hessian (column major)
// In this example there is a single block (i.e., a single value)
// and the corresponding block of the Hessian is
//
// H0 = [17 7; 7 10]
//
Matrix expectedH0 = it1->second;
Matrix actualH0 = *it2;
EXPECT(assert_equal(expectedH0, (Matrix(2,2) << 17, 7, 7, 10) ));
EXPECT(assert_equal(expectedH0, actualH0));
// The corresponding Cholesky decomposition is:
// R = chol(H0) = [4.1231 1.6977 0 2.6679] (from Matlab)
Preconditioner::shared_ptr preconditioner = createPreconditioner(boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>());
preconditioner->build(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>());
boost::shared_ptr<BlockJacobiPreconditioner> blockJacobi = boost::dynamic_pointer_cast<BlockJacobiPreconditioner>(preconditioner);
Vector expectedR = (Vector(4) << 4.1231, 0, 1.6977, 2.6679);
double* buf = blockJacobi->getBuffer();
for(int i=0; i<4; ++i){
EXPECT_DOUBLES_EQUAL(expectedR(i), buf[i], 1e-4);
}
}
/* ************************************************************************* */
TEST( BlockJacobiPreconditioner, SimpleLinerSystem) {
// Create a Gaussian Factor Graph
GaussianFactorGraph simpleGFG;
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << -1, -1), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10), 0, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << 2, -1), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << 0, 1), unit2);
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << -1, 1.5), unit2);
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
// Expected Hessian block diagonal matrices
std::map<Key, Matrix> expectedHessian =simpleGFG.hessianBlockDiagonal();
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
std::vector<Matrix> actualHessian = buildBlocks(simpleGFG, KeyInfo(simpleGFG));
// Compare the number of block diagonal matrices
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
// Compare the values of matrices
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
Preconditioner::shared_ptr preconditioner = createPreconditioner(boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>());
preconditioner->build(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>());
boost::shared_ptr<BlockJacobiPreconditioner> blockJacobi = boost::dynamic_pointer_cast<BlockJacobiPreconditioner>(preconditioner);
double* buf = blockJacobi->getBuffer();
for(size_t i=0; i<blockJacobi->getBufferSize(); ++i){
std::cout << "buf[" << i << "] = " << buf[i] << std::endl;
}
}
/* ************************************************************************* */
TEST( PCGsolver, verySimpleLinearSystem) {
// Ax = [4 1][u] = [1] x0 = [2]
// [1 3][v] [2] [1]
//
// exact solution x = [1/11, 7/11]';
//
// Create a Gaussian Factor Graph
GaussianFactorGraph simpleGFG;
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 4, 1, 1, 3), (Vector(2) << 1,2 ), noiseModel::Unit::Create(2));
//simpleGFG.print("Factors\n");
// Exact solution already known
VectorValues exactSolution;
exactSolution.insert(0, (Vector(2) << 1./11., 7./11.));
//exactSolution.print("Exact");
// Solve the system using direct method
VectorValues deltaDirect = simpleGFG.optimize();
EXPECT(assert_equal(exactSolution, deltaDirect, 1e-7));
//deltaDirect.print("Direct");
// Solve the system using PCG
// With Dummy preconditioner
gtsam::PCGSolverParameters::shared_ptr pcg = boost::make_shared<gtsam::PCGSolverParameters>();
pcg->preconditioner_ = boost::make_shared<gtsam::DummyPreconditionerParameters>();
pcg->setMaxIterations(500);
pcg->setEpsilon_abs(0.0);
pcg->setEpsilon_rel(0.0);
//pcg->setVerbosity("ERROR");
VectorValues deltaPCGDummy = PCGSolver(*pcg).optimize(simpleGFG);
EXPECT(assert_equal(exactSolution, deltaPCGDummy, 1e-7));
// With Block-Jacobi preconditioner
gtsam::PCGSolverParameters::shared_ptr pcgJacobi = boost::make_shared<gtsam::PCGSolverParameters>();
pcgJacobi->preconditioner_ = boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>();
pcgJacobi->setMaxIterations(500);
pcgJacobi->setEpsilon_abs(0.0);
pcgJacobi->setEpsilon_rel(0.0);
VectorValues deltaPCGJacobi = PCGSolver(*pcgJacobi).optimize(simpleGFG);
// Failed!
EXPECT(assert_equal(exactSolution, deltaPCGJacobi, 1e-5));
//deltaPCGJacobi.print("PCG Jacobi");
}
/* ************************************************************************* */
TEST(PCGSolver, simpleLinearSystem) {
// Create a Gaussian Factor Graph
GaussianFactorGraph simpleGFG;
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << -1, -1), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10), 0, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << 2, -1), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << 0, 1), unit2);
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << -1, 1.5), unit2);
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
//simpleGFG.print("Factors\n");
// Expected solution
VectorValues expectedSolution;
expectedSolution.insert(0, (Vector(2) << 0.100498, -0.196756));
expectedSolution.insert(2, (Vector(2) << -0.0990413, -0.0980577));
expectedSolution.insert(1, (Vector(2) << -0.0973252, 0.100582));
// Solve the system using direct method
VectorValues deltaDirect = simpleGFG.optimize();
EXPECT(assert_equal(expectedSolution, deltaDirect, 1e-5));
//expectedSolution.print("Expected");
//deltaCholesky.print("Direct");
// Solve the system using PCG
VectorValues initial;
initial.insert(0, (Vector(2) << 0.1, -0.1));
initial.insert(1, (Vector(2) << -0.1, 0.1));
initial.insert(2, (Vector(2) << -0.1, -0.1));
// With Dummy preconditioner
gtsam::PCGSolverParameters::shared_ptr pcg = boost::make_shared<gtsam::PCGSolverParameters>();
pcg->preconditioner_ = boost::make_shared<gtsam::DummyPreconditionerParameters>();
pcg->setMaxIterations(500);
pcg->setEpsilon_abs(0.0);
pcg->setEpsilon_rel(0.0);
//pcg->setVerbosity("ERROR");
VectorValues deltaPCGDummy = PCGSolver(*pcg).optimize(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>(), initial);
// Failed!
EXPECT(assert_equal(expectedSolution, deltaPCGDummy, 1e-5));
//deltaPCGDummy.print("PCG Dummy");
// Solve the system using Preconditioned Conjugate Gradient
pcg->preconditioner_ = boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>();
VectorValues deltaPCGJacobi = PCGSolver(*pcg).optimize(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>(), initial);
// Failed!
EXPECT(assert_equal(expectedSolution, deltaPCGJacobi, 1e-5));
//deltaPCGJacobi.print("PCG Jacobi");
// Test that the retrieval of the diagonal blocks of the Jacobian are correct.
std::map<Key, Matrix> expectedHessian =simpleGFG.hessianBlockDiagonal();
std::vector<Matrix> actualHessian = buildBlocks(simpleGFG, KeyInfo(simpleGFG));
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
// The corresponding Cholesky decomposition is:
// R = chol(H0) = [4.1231 1.6977 0 2.6679] (from Matlab)
Preconditioner::shared_ptr preconditioner = createPreconditioner(boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>());
preconditioner->build(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>());
boost::shared_ptr<BlockJacobiPreconditioner> blockJacobi = boost::dynamic_pointer_cast<BlockJacobiPreconditioner>(preconditioner);
double* buf = blockJacobi->getBuffer();
for(int i=0; i<4; ++i){}
// TODO: EXPECT(assert_equal(number..,buf[i]));
size_t i = 0;
for(; it1!=expectedHessian.end(); it1++, it2++){
EXPECT(assert_equal(it1->second, *it2));
Matrix R_i(2,2);
R_i(0,0) = buf[i+0];
R_i(0,1) = buf[i+1];
R_i(1,0) = buf[i+2];
R_i(1,1) = buf[i+3];
Matrix actualH_i = R_i.transpose() * R_i;// i-th diagonal block
EXPECT(assert_equal(it1->second, actualH_i));
i += 4;
}
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */