681 lines
24 KiB
C++
681 lines
24 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file DecisionTree.h
|
|
* @brief Decision Tree for use in DiscreteFactors
|
|
* @author Frank Dellaert
|
|
* @author Can Erdogan
|
|
* @date Jan 30, 2012
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/discrete/DecisionTree.h>
|
|
#include <gtsam/base/Testable.h>
|
|
|
|
#include <boost/format.hpp>
|
|
#include <boost/optional.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/assign/std/vector.hpp>
|
|
using boost::assign::operator+=;
|
|
#include <boost/unordered_set.hpp>
|
|
#include <boost/noncopyable.hpp>
|
|
|
|
#include <list>
|
|
#include <cmath>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
namespace gtsam {
|
|
|
|
/*********************************************************************************/
|
|
// Node
|
|
/*********************************************************************************/
|
|
#ifdef DT_DEBUG_MEMORY
|
|
template<typename L, typename Y>
|
|
int DecisionTree<L, Y>::Node::nrNodes = 0;
|
|
#endif
|
|
|
|
/*********************************************************************************/
|
|
// Leaf
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
class DecisionTree<L, Y>::Leaf: public DecisionTree<L, Y>::Node {
|
|
|
|
/** constant stored in this leaf */
|
|
Y constant_;
|
|
|
|
public:
|
|
|
|
/** Constructor from constant */
|
|
Leaf(const Y& constant) :
|
|
constant_(constant) {}
|
|
|
|
/** return the constant */
|
|
const Y& constant() const {
|
|
return constant_;
|
|
}
|
|
|
|
/// Leaf-Leaf equality
|
|
bool sameLeaf(const Leaf& q) const override {
|
|
return constant_ == q.constant_;
|
|
}
|
|
|
|
/// polymorphic equality: is q is a leaf, could be
|
|
bool sameLeaf(const Node& q) const override {
|
|
return (q.isLeaf() && q.sameLeaf(*this));
|
|
}
|
|
|
|
/** equality up to tolerance */
|
|
bool equals(const Node& q, double tol) const override {
|
|
const Leaf* other = dynamic_cast<const Leaf*> (&q);
|
|
if (!other) return false;
|
|
return std::abs(double(this->constant_ - other->constant_)) < tol;
|
|
}
|
|
|
|
/** print */
|
|
void print(const std::string& s) const override {
|
|
bool showZero = true;
|
|
if (showZero || constant_) std::cout << s << " Leaf " << constant_ << std::endl;
|
|
}
|
|
|
|
/** to graphviz file */
|
|
void dot(std::ostream& os, bool showZero) const override {
|
|
if (showZero || constant_) os << "\"" << this->id() << "\" [label=\""
|
|
<< boost::format("%4.2g") % constant_
|
|
<< "\", shape=box, rank=sink, height=0.35, fixedsize=true]\n"; // width=0.55,
|
|
}
|
|
|
|
/** evaluate */
|
|
const Y& operator()(const Assignment<L>& x) const override {
|
|
return constant_;
|
|
}
|
|
|
|
/** apply unary operator */
|
|
NodePtr apply(const Unary& op) const override {
|
|
NodePtr f(new Leaf(op(constant_)));
|
|
return f;
|
|
}
|
|
|
|
// Apply binary operator "h = f op g" on Leaf node
|
|
// Note op is not assumed commutative so we need to keep track of order
|
|
// Simply calls apply on argument to call correct virtual method:
|
|
// fL.apply_f_op_g(gL) -> gL.apply_g_op_fL(fL) (below)
|
|
// fL.apply_f_op_g(gC) -> gC.apply_g_op_fL(fL) (Choice)
|
|
NodePtr apply_f_op_g(const Node& g, const Binary& op) const override {
|
|
return g.apply_g_op_fL(*this, op);
|
|
}
|
|
|
|
// Applying binary operator to two leaves results in a leaf
|
|
NodePtr apply_g_op_fL(const Leaf& fL, const Binary& op) const override {
|
|
NodePtr h(new Leaf(op(fL.constant_, constant_))); // fL op gL
|
|
return h;
|
|
}
|
|
|
|
// If second argument is a Choice node, call it's apply with leaf as second
|
|
NodePtr apply_g_op_fC(const Choice& fC, const Binary& op) const override {
|
|
return fC.apply_fC_op_gL(*this, op); // operand order back to normal
|
|
}
|
|
|
|
/** choose a branch, create new memory ! */
|
|
NodePtr choose(const L& label, size_t index) const override {
|
|
return NodePtr(new Leaf(constant()));
|
|
}
|
|
|
|
bool isLeaf() const override { return true; }
|
|
|
|
}; // Leaf
|
|
|
|
/*********************************************************************************/
|
|
// Choice
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
class DecisionTree<L, Y>::Choice: public DecisionTree<L, Y>::Node {
|
|
|
|
/** the label of the variable on which we split */
|
|
L label_;
|
|
|
|
/** The children of this Choice node. */
|
|
std::vector<NodePtr> branches_;
|
|
|
|
private:
|
|
/** incremental allSame */
|
|
size_t allSame_;
|
|
|
|
typedef boost::shared_ptr<const Choice> ChoicePtr;
|
|
|
|
public:
|
|
|
|
virtual ~Choice() {
|
|
#ifdef DT_DEBUG_MEMORY
|
|
std::std::cout << Node::nrNodes << " destructing (Choice) " << this->id() << std::std::endl;
|
|
#endif
|
|
}
|
|
|
|
/** If all branches of a choice node f are the same, just return a branch */
|
|
static NodePtr Unique(const ChoicePtr& f) {
|
|
#ifndef DT_NO_PRUNING
|
|
if (f->allSame_) {
|
|
assert(f->branches().size() > 0);
|
|
NodePtr f0 = f->branches_[0];
|
|
assert(f0->isLeaf());
|
|
NodePtr newLeaf(new Leaf(boost::dynamic_pointer_cast<const Leaf>(f0)->constant()));
|
|
return newLeaf;
|
|
} else
|
|
#endif
|
|
return f;
|
|
}
|
|
|
|
bool isLeaf() const override { return false; }
|
|
|
|
/** Constructor, given choice label and mandatory expected branch count */
|
|
Choice(const L& label, size_t count) :
|
|
label_(label), allSame_(true) {
|
|
branches_.reserve(count);
|
|
}
|
|
|
|
/**
|
|
* Construct from applying binary op to two Choice nodes
|
|
*/
|
|
Choice(const Choice& f, const Choice& g, const Binary& op) :
|
|
allSame_(true) {
|
|
|
|
// Choose what to do based on label
|
|
if (f.label() > g.label()) {
|
|
// f higher than g
|
|
label_ = f.label();
|
|
size_t count = f.nrChoices();
|
|
branches_.reserve(count);
|
|
for (size_t i = 0; i < count; i++)
|
|
push_back(f.branches_[i]->apply_f_op_g(g, op));
|
|
} else if (g.label() > f.label()) {
|
|
// f lower than g
|
|
label_ = g.label();
|
|
size_t count = g.nrChoices();
|
|
branches_.reserve(count);
|
|
for (size_t i = 0; i < count; i++)
|
|
push_back(g.branches_[i]->apply_g_op_fC(f, op));
|
|
} else {
|
|
// f same level as g
|
|
label_ = f.label();
|
|
size_t count = f.nrChoices();
|
|
branches_.reserve(count);
|
|
for (size_t i = 0; i < count; i++)
|
|
push_back(f.branches_[i]->apply_f_op_g(*g.branches_[i], op));
|
|
}
|
|
}
|
|
|
|
const L& label() const {
|
|
return label_;
|
|
}
|
|
|
|
size_t nrChoices() const {
|
|
return branches_.size();
|
|
}
|
|
|
|
const std::vector<NodePtr>& branches() const {
|
|
return branches_;
|
|
}
|
|
|
|
/** add a branch: TODO merge into constructor */
|
|
void push_back(const NodePtr& node) {
|
|
// allSame_ is restricted to leaf nodes in a decision tree
|
|
if (allSame_ && !branches_.empty()) {
|
|
allSame_ = node->sameLeaf(*branches_.back());
|
|
}
|
|
branches_.push_back(node);
|
|
}
|
|
|
|
/** print (as a tree) */
|
|
void print(const std::string& s) const override {
|
|
std::cout << s << " Choice(";
|
|
// std::cout << this << ",";
|
|
std::cout << label_ << ") " << std::endl;
|
|
for (size_t i = 0; i < branches_.size(); i++)
|
|
branches_[i]->print((boost::format("%s %d") % s % i).str());
|
|
}
|
|
|
|
/** output to graphviz (as a a graph) */
|
|
void dot(std::ostream& os, bool showZero) const override {
|
|
os << "\"" << this->id() << "\" [shape=circle, label=\"" << label_
|
|
<< "\"]\n";
|
|
for (size_t i = 0; i < branches_.size(); i++) {
|
|
NodePtr branch = branches_[i];
|
|
|
|
// Check if zero
|
|
if (!showZero) {
|
|
const Leaf* leaf = dynamic_cast<const Leaf*> (branch.get());
|
|
if (leaf && !leaf->constant()) continue;
|
|
}
|
|
|
|
os << "\"" << this->id() << "\" -> \"" << branch->id() << "\"";
|
|
if (i == 0) os << " [style=dashed]";
|
|
if (i > 1) os << " [style=bold]";
|
|
os << std::endl;
|
|
branch->dot(os, showZero);
|
|
}
|
|
}
|
|
|
|
/// Choice-Leaf equality: always false
|
|
bool sameLeaf(const Leaf& q) const override {
|
|
return false;
|
|
}
|
|
|
|
/// polymorphic equality: if q is a leaf, could be...
|
|
bool sameLeaf(const Node& q) const override {
|
|
return (q.isLeaf() && q.sameLeaf(*this));
|
|
}
|
|
|
|
/** equality up to tolerance */
|
|
bool equals(const Node& q, double tol) const override {
|
|
const Choice* other = dynamic_cast<const Choice*> (&q);
|
|
if (!other) return false;
|
|
if (this->label_ != other->label_) return false;
|
|
if (branches_.size() != other->branches_.size()) return false;
|
|
// we don't care about shared pointers being equal here
|
|
for (size_t i = 0; i < branches_.size(); i++)
|
|
if (!(branches_[i]->equals(*(other->branches_[i]), tol))) return false;
|
|
return true;
|
|
}
|
|
|
|
/** evaluate */
|
|
const Y& operator()(const Assignment<L>& x) const override {
|
|
#ifndef NDEBUG
|
|
typename Assignment<L>::const_iterator it = x.find(label_);
|
|
if (it == x.end()) {
|
|
std::cout << "Trying to find value for " << label_ << std::endl;
|
|
throw std::invalid_argument(
|
|
"DecisionTree::operator(): value undefined for a label");
|
|
}
|
|
#endif
|
|
size_t index = x.at(label_);
|
|
NodePtr child = branches_[index];
|
|
return (*child)(x);
|
|
}
|
|
|
|
/**
|
|
* Construct from applying unary op to a Choice node
|
|
*/
|
|
Choice(const L& label, const Choice& f, const Unary& op) :
|
|
label_(label), allSame_(true) {
|
|
|
|
branches_.reserve(f.branches_.size()); // reserve space
|
|
for (const NodePtr& branch: f.branches_)
|
|
push_back(branch->apply(op));
|
|
}
|
|
|
|
/** apply unary operator */
|
|
NodePtr apply(const Unary& op) const override {
|
|
boost::shared_ptr<Choice> r(new Choice(label_, *this, op));
|
|
return Unique(r);
|
|
}
|
|
|
|
// Apply binary operator "h = f op g" on Choice node
|
|
// Note op is not assumed commutative so we need to keep track of order
|
|
// Simply calls apply on argument to call correct virtual method:
|
|
// fC.apply_f_op_g(gL) -> gL.apply_g_op_fC(fC) -> (Leaf)
|
|
// fC.apply_f_op_g(gC) -> gC.apply_g_op_fC(fC) -> (below)
|
|
NodePtr apply_f_op_g(const Node& g, const Binary& op) const override {
|
|
return g.apply_g_op_fC(*this, op);
|
|
}
|
|
|
|
// If second argument of binary op is Leaf node, recurse on branches
|
|
NodePtr apply_g_op_fL(const Leaf& fL, const Binary& op) const override {
|
|
boost::shared_ptr<Choice> h(new Choice(label(), nrChoices()));
|
|
for(NodePtr branch: branches_)
|
|
h->push_back(fL.apply_f_op_g(*branch, op));
|
|
return Unique(h);
|
|
}
|
|
|
|
// If second argument of binary op is Choice, call constructor
|
|
NodePtr apply_g_op_fC(const Choice& fC, const Binary& op) const override {
|
|
boost::shared_ptr<Choice> h(new Choice(fC, *this, op));
|
|
return Unique(h);
|
|
}
|
|
|
|
// If second argument of binary op is Leaf
|
|
template<typename OP>
|
|
NodePtr apply_fC_op_gL(const Leaf& gL, OP op) const {
|
|
boost::shared_ptr<Choice> h(new Choice(label(), nrChoices()));
|
|
for(const NodePtr& branch: branches_)
|
|
h->push_back(branch->apply_f_op_g(gL, op));
|
|
return Unique(h);
|
|
}
|
|
|
|
/** choose a branch, recursively */
|
|
NodePtr choose(const L& label, size_t index) const override {
|
|
if (label_ == label)
|
|
return branches_[index]; // choose branch
|
|
|
|
// second case, not label of interest, just recurse
|
|
boost::shared_ptr<Choice> r(new Choice(label_, branches_.size()));
|
|
for(const NodePtr& branch: branches_)
|
|
r->push_back(branch->choose(label, index));
|
|
return Unique(r);
|
|
}
|
|
|
|
}; // Choice
|
|
|
|
/*********************************************************************************/
|
|
// DecisionTree
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y>::DecisionTree() {
|
|
}
|
|
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y>::DecisionTree(const NodePtr& root) :
|
|
root_(root) {
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y>::DecisionTree(const Y& y) {
|
|
root_ = NodePtr(new Leaf(y));
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y>::DecisionTree(//
|
|
const L& label, const Y& y1, const Y& y2) {
|
|
boost::shared_ptr<Choice> a(new Choice(label, 2));
|
|
NodePtr l1(new Leaf(y1)), l2(new Leaf(y2));
|
|
a->push_back(l1);
|
|
a->push_back(l2);
|
|
root_ = Choice::Unique(a);
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y>::DecisionTree(//
|
|
const LabelC& labelC, const Y& y1, const Y& y2) {
|
|
if (labelC.second != 2) throw std::invalid_argument(
|
|
"DecisionTree: binary constructor called with non-binary label");
|
|
boost::shared_ptr<Choice> a(new Choice(labelC.first, 2));
|
|
NodePtr l1(new Leaf(y1)), l2(new Leaf(y2));
|
|
a->push_back(l1);
|
|
a->push_back(l2);
|
|
root_ = Choice::Unique(a);
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y>::DecisionTree(const std::vector<LabelC>& labelCs,
|
|
const std::vector<Y>& ys) {
|
|
// call recursive Create
|
|
root_ = create(labelCs.begin(), labelCs.end(), ys.begin(), ys.end());
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y>::DecisionTree(const std::vector<LabelC>& labelCs,
|
|
const std::string& table) {
|
|
|
|
// Convert std::string to values of type Y
|
|
std::vector<Y> ys;
|
|
std::istringstream iss(table);
|
|
copy(std::istream_iterator<Y>(iss), std::istream_iterator<Y>(),
|
|
back_inserter(ys));
|
|
|
|
// now call recursive Create
|
|
root_ = create(labelCs.begin(), labelCs.end(), ys.begin(), ys.end());
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
template<typename Iterator> DecisionTree<L, Y>::DecisionTree(
|
|
Iterator begin, Iterator end, const L& label) {
|
|
root_ = compose(begin, end, label);
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y>::DecisionTree(const L& label,
|
|
const DecisionTree& f0, const DecisionTree& f1) {
|
|
std::vector<DecisionTree> functions;
|
|
functions += f0, f1;
|
|
root_ = compose(functions.begin(), functions.end(), label);
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
template<typename M, typename X>
|
|
DecisionTree<L, Y>::DecisionTree(const DecisionTree<M, X>& other,
|
|
const std::map<M, L>& map, boost::function<Y(const X&)> op) {
|
|
root_ = convert(other.root_, map, op);
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
// Called by two constructors above.
|
|
// Takes a label and a corresponding range of decision trees, and creates a new
|
|
// decision tree. However, the order of the labels needs to be respected, so we
|
|
// cannot just create a root Choice node on the label: if the label is not the
|
|
// highest label, we need to do a complicated and expensive recursive call.
|
|
template<typename L, typename Y> template<typename Iterator>
|
|
typename DecisionTree<L, Y>::NodePtr DecisionTree<L, Y>::compose(Iterator begin,
|
|
Iterator end, const L& label) const {
|
|
|
|
// find highest label among branches
|
|
boost::optional<L> highestLabel;
|
|
size_t nrChoices = 0;
|
|
for (Iterator it = begin; it != end; it++) {
|
|
if (it->root_->isLeaf())
|
|
continue;
|
|
boost::shared_ptr<const Choice> c =
|
|
boost::dynamic_pointer_cast<const Choice>(it->root_);
|
|
if (!highestLabel || c->label() > *highestLabel) {
|
|
highestLabel.reset(c->label());
|
|
nrChoices = c->nrChoices();
|
|
}
|
|
}
|
|
|
|
// if label is already in correct order, just put together a choice on label
|
|
if (!nrChoices || !highestLabel || label > *highestLabel) {
|
|
boost::shared_ptr<Choice> choiceOnLabel(new Choice(label, end - begin));
|
|
for (Iterator it = begin; it != end; it++)
|
|
choiceOnLabel->push_back(it->root_);
|
|
return Choice::Unique(choiceOnLabel);
|
|
} else {
|
|
// Set up a new choice on the highest label
|
|
boost::shared_ptr<Choice> choiceOnHighestLabel(new Choice(*highestLabel, nrChoices));
|
|
// now, for all possible values of highestLabel
|
|
for (size_t index = 0; index < nrChoices; index++) {
|
|
// make a new set of functions for composing by iterating over the given
|
|
// functions, and selecting the appropriate branch.
|
|
std::vector<DecisionTree> functions;
|
|
for (Iterator it = begin; it != end; it++) {
|
|
// by restricting the input functions to value i for labelBelow
|
|
DecisionTree chosen = it->choose(*highestLabel, index);
|
|
functions.push_back(chosen);
|
|
}
|
|
// We then recurse, for all values of the highest label
|
|
NodePtr fi = compose(functions.begin(), functions.end(), label);
|
|
choiceOnHighestLabel->push_back(fi);
|
|
}
|
|
return Choice::Unique(choiceOnHighestLabel);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
// "create" is a bit of a complicated thing, but very useful.
|
|
// It takes a range of labels and a corresponding range of values,
|
|
// and creates a decision tree, as follows:
|
|
// - if there is only one label, creates a choice node with values in leaves
|
|
// - otherwise, it evenly splits up the range of values and creates a tree for
|
|
// each sub-range, and assigns that tree to first label's choices
|
|
// Example:
|
|
// create([B A],[1 2 3 4]) would call
|
|
// create([A],[1 2])
|
|
// create([A],[3 4])
|
|
// and produce
|
|
// B=0
|
|
// A=0: 1
|
|
// A=1: 2
|
|
// B=1
|
|
// A=0: 3
|
|
// A=1: 4
|
|
// Note, through the magic of "compose", create([A B],[1 2 3 4]) will produce
|
|
// exactly the same tree as above: the highest label is always the root.
|
|
// However, it will be *way* faster if labels are given highest to lowest.
|
|
template<typename L, typename Y>
|
|
template<typename It, typename ValueIt>
|
|
typename DecisionTree<L, Y>::NodePtr DecisionTree<L, Y>::create(
|
|
It begin, It end, ValueIt beginY, ValueIt endY) const {
|
|
|
|
// get crucial counts
|
|
size_t nrChoices = begin->second;
|
|
size_t size = endY - beginY;
|
|
|
|
// Find the next key to work on
|
|
It labelC = begin + 1;
|
|
if (labelC == end) {
|
|
// Base case: only one key left
|
|
// Create a simple choice node with values as leaves.
|
|
if (size != nrChoices) {
|
|
std::cout << "Trying to create DD on " << begin->first << std::endl;
|
|
std::cout << boost::format("DecisionTree::create: expected %d values but got %d instead") % nrChoices % size << std::endl;
|
|
throw std::invalid_argument("DecisionTree::create invalid argument");
|
|
}
|
|
boost::shared_ptr<Choice> choice(new Choice(begin->first, endY - beginY));
|
|
for (ValueIt y = beginY; y != endY; y++)
|
|
choice->push_back(NodePtr(new Leaf(*y)));
|
|
return Choice::Unique(choice);
|
|
}
|
|
|
|
// Recursive case: perform "Shannon expansion"
|
|
// Creates one tree (i.e.,function) for each choice of current key
|
|
// by calling create recursively, and then puts them all together.
|
|
std::vector<DecisionTree> functions;
|
|
size_t split = size / nrChoices;
|
|
for (size_t i = 0; i < nrChoices; i++, beginY += split) {
|
|
NodePtr f = create<It, ValueIt>(labelC, end, beginY, beginY + split);
|
|
functions += DecisionTree(f);
|
|
}
|
|
return compose(functions.begin(), functions.end(), begin->first);
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
template<typename M, typename X>
|
|
typename DecisionTree<L, Y>::NodePtr DecisionTree<L, Y>::convert(
|
|
const typename DecisionTree<M, X>::NodePtr& f, const std::map<M, L>& map,
|
|
boost::function<Y(const X&)> op) {
|
|
|
|
typedef DecisionTree<M, X> MX;
|
|
typedef typename MX::Leaf MXLeaf;
|
|
typedef typename MX::Choice MXChoice;
|
|
typedef typename MX::NodePtr MXNodePtr;
|
|
typedef DecisionTree<L, Y> LY;
|
|
|
|
// ugliness below because apparently we can't have templated virtual functions
|
|
// If leaf, apply unary conversion "op" and create a unique leaf
|
|
const MXLeaf* leaf = dynamic_cast<const MXLeaf*> (f.get());
|
|
if (leaf) return NodePtr(new Leaf(op(leaf->constant())));
|
|
|
|
// Check if Choice
|
|
boost::shared_ptr<const MXChoice> choice = boost::dynamic_pointer_cast<const MXChoice> (f);
|
|
if (!choice) throw std::invalid_argument(
|
|
"DecisionTree::Convert: Invalid NodePtr");
|
|
|
|
// get new label
|
|
M oldLabel = choice->label();
|
|
L newLabel = map.at(oldLabel);
|
|
|
|
// put together via Shannon expansion otherwise not sorted.
|
|
std::vector<LY> functions;
|
|
for(const MXNodePtr& branch: choice->branches()) {
|
|
LY converted(convert<M, X>(branch, map, op));
|
|
functions += converted;
|
|
}
|
|
return LY::compose(functions.begin(), functions.end(), newLabel);
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
bool DecisionTree<L, Y>::equals(const DecisionTree& other, double tol) const {
|
|
return root_->equals(*other.root_, tol);
|
|
}
|
|
|
|
template<typename L, typename Y>
|
|
void DecisionTree<L, Y>::print(const std::string& s) const {
|
|
root_->print(s);
|
|
}
|
|
|
|
template<typename L, typename Y>
|
|
bool DecisionTree<L, Y>::operator==(const DecisionTree& other) const {
|
|
return root_->equals(*other.root_);
|
|
}
|
|
|
|
template<typename L, typename Y>
|
|
const Y& DecisionTree<L, Y>::operator()(const Assignment<L>& x) const {
|
|
return root_->operator ()(x);
|
|
}
|
|
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y> DecisionTree<L, Y>::apply(const Unary& op) const {
|
|
return DecisionTree(root_->apply(op));
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y> DecisionTree<L, Y>::apply(const DecisionTree& g,
|
|
const Binary& op) const {
|
|
// apply the operaton on the root of both diagrams
|
|
NodePtr h = root_->apply_f_op_g(*g.root_, op);
|
|
// create a new class with the resulting root "h"
|
|
DecisionTree result(h);
|
|
return result;
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
// The way this works:
|
|
// We have an ADT, picture it as a tree.
|
|
// At a certain depth, we have a branch on "label".
|
|
// The function "choose(label,index)" will return a tree of one less depth,
|
|
// where there is no more branch on "label": only the subtree under that
|
|
// branch point corresponding to the value "index" is left instead.
|
|
// The function below get all these smaller trees and "ops" them together.
|
|
// This implements marginalization in Darwiche09book, pg 330
|
|
template<typename L, typename Y>
|
|
DecisionTree<L, Y> DecisionTree<L, Y>::combine(const L& label,
|
|
size_t cardinality, const Binary& op) const {
|
|
DecisionTree result = choose(label, 0);
|
|
for (size_t index = 1; index < cardinality; index++) {
|
|
DecisionTree chosen = choose(label, index);
|
|
result = result.apply(chosen, op);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
template<typename L, typename Y>
|
|
void DecisionTree<L, Y>::dot(std::ostream& os, bool showZero) const {
|
|
os << "digraph G {\n";
|
|
root_->dot(os, showZero);
|
|
os << " [ordering=out]}" << std::endl;
|
|
}
|
|
|
|
template<typename L, typename Y>
|
|
void DecisionTree<L, Y>::dot(const std::string& name, bool showZero) const {
|
|
std::ofstream os((name + ".dot").c_str());
|
|
dot(os, showZero);
|
|
int result = system(
|
|
("dot -Tpdf " + name + ".dot -o " + name + ".pdf >& /dev/null").c_str());
|
|
if (result==-1) throw std::runtime_error("DecisionTree::dot system call failed");
|
|
}
|
|
|
|
/*********************************************************************************/
|
|
|
|
} // namespace gtsam
|
|
|
|
|