gtsam/cpp/svdcmp.cpp

255 lines
5.1 KiB
C++

/**
* @file svdcmp.cpp
* @brief SVD decomposition adapted from NRC
* @author Alireza Fathi
* @author Frank Dellaert
*/
#include <stdexcept>
#include <math.h> /* for 'fabs' */
#include <iostream>
#include <vector>
using namespace std;
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
static double sqrarg;
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg)
static double maxarg1,maxarg2;
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1) > (maxarg2) ?\
(maxarg1) : (maxarg2))
static int iminarg1,iminarg2;
#define IMIN(a,b) (iminarg1=(a),iminarg2=(b),(iminarg1) < (iminarg2) ?\
(iminarg1) : (iminarg2))
/* ************************************************************************* */
/*
double pythag(double a, double b)
{
double absa = 0.0, absb = 0.0;
absa=fabs(a);
absb=fabs(b);
if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));
else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb)));
}
*/
/* ************************************************************************* */
double pythag(double a, double b)
{
double absa = 0.0, absb = 0.0;
absa=fabs(a);
absb=fabs(b);
if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));
else {
if(absb == 0.0)
return 0.0;
else
return (absb * sqrt(1.0 + SQR(absa/absb)));
}
}
/* ************************************************************************* */
void svdcmp(double **a, int m, int n, double w[], double **v)
{
int flag,i,its,j,jj,k,l,nm;
double anorm,c,f,g,h,s,scale,x,y,z;
//vector sizes:
// w[n] - q-1 passed in
// a[m] - u-1 passed in
// v[n] - v-1 passed in
//Current progress on verifying array bounds:
// rv1 references have been fixed
double *rv1 = new double[n];
g= 0.0;
scale= 0.0;
anorm= 0.0;
for (i=1;i<=n;i++) {
l=i+1;
rv1[i-1]=scale*g;
g=s=scale=0.0;
if (i <= m) {
for (k=i;k<=m;k++) scale += fabs(a[k][i]);
if (scale) {
for (k=i;k<=m;k++) {
a[k][i] /= scale;
s += a[k][i]*a[k][i];
}
f=a[i][i];
g = -SIGN(sqrt(s),f);
h=f*g-s;
a[i][i]=f-g;
for (j=l;j<=n;j++) {
for (s=0.0,k=i;k<=m;k++) s += a[k][i]*a[k][j];
f=s/h;
for (k=i;k<=m;k++) a[k][j] += f*a[k][i];
}
for (k=i;k<=m;k++) a[k][i] *= scale;
}
}
w[i]=scale *g;
g=s=scale=0.0;
if (i <= m && i != n) {
for (k=l;k<=n;k++) scale += fabs(a[i][k]);
if (scale) {
for (k=l;k<=n;k++) {
a[i][k] /= scale;
s += a[i][k]*a[i][k];
}
f=a[i][l];
g = -SIGN(sqrt(s),f);
h=f*g-s;
a[i][l]=f-g;
for (k=l;k<=n;k++)
{
rv1[k-1]=a[i][k]/h;
}
for (j=l;j<=m;j++) {
for (s=0.0,k=l;k<=n;k++)
s += a[j][k]*a[i][k];
for (k=l;k<=n;k++)
{
a[j][k] += s*rv1[k-1];
}
}
for (k=l;k<=n;k++) a[i][k] *= scale;
}
}
anorm=FMAX(anorm,(fabs(w[i])+fabs(rv1[i-1])));
}
for (i=n;i>=1;i--) {
if (i < n) {
if (g) {
for (j=l;j<=n;j++)
v[j][i]=(a[i][j]/a[i][l])/g;
for (j=l;j<=n;j++) {
for (s=0.0,k=l;k<=n;k++) s += a[i][k]*v[k][j];
for (k=l;k<=n;k++) v[k][j] += s*v[k][i];
}
}
for (j=l;j<=n;j++) v[i][j]=v[j][i]=0.0;
}
v[i][i]=1.0;
g=rv1[i-1];
l=i;
}
for (i=IMIN(m,n);i>=1;i--) {
l=i+1;
g=w[i];
for (j=l;j<=n;j++) a[i][j]=0.0;
if (g) {
g=1.0/g;
for (j=l;j<=n;j++) {
for (s=0.0,k=l;k<=m;k++) s += a[k][i]*a[k][j];
f=(s/a[i][i])*g;
for (k=i;k<=m;k++) a[k][j] += f*a[k][i];
}
for (j=i;j<=m;j++) a[j][i] *= g;
} else for (j=i;j<=m;j++) a[j][i]=0.0;
++a[i][i];
}
for (k=n;k>=1;k--) {
for (its=1;its<=30;its++) {
flag=1;
for (l=k;l>=1;l--) {
nm=l-1;
if ((double)(fabs(rv1[l-1])+anorm) == anorm) {
flag=0;
break;
}
if ((double)(fabs(w[nm])+anorm) == anorm) break;
}
if (flag) {
c=0.0;
s=1.0;
for (i=l;i<=k;i++) {
f=s*rv1[i-1];
rv1[i-1]=c*rv1[i-1];
if ((double)(fabs(f)+anorm) == anorm) break;
g=w[i];
h=pythag(f,g);
w[i]=h;
h=1.0/h;
c=g*h;
s = -f*h;
for (j=1;j<=m;j++) {
y=a[j][nm];
z=a[j][i];
a[j][nm]=y*c+z*s;
a[j][i]=z*c-y*s;
}
}
}
z=w[k];
if (l == k) {
if (z < 0.0) {
w[k] = -z;
for (j=1;j<=n;j++) v[j][k] = -v[j][k];
}
break;
}
if (its == 30) throw(std::domain_error("no convergence in 30 svdcmp iterations"));
x=w[l];
nm=k-1;
y=w[nm];
g=rv1[nm-1] ;
h=rv1[k-1];
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
g=pythag(f,1.0);
f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;
c=s=1.0;
for (j=l;j<=nm;j++) {
i=j+1;
g=rv1[i-1];
y=w[i];
h=s*g;
g=c*g;
z=pythag(f,h);
rv1[j-1]=z;
c=f/z;
s=h/z;
f=x*c+g*s;
g = g*c-x*s;
h=y*s;
y *= c;
for (jj=1;jj<=n;jj++) {
x=v[jj][j];
z=v[jj][i];
v[jj][j]=x*c+z*s;
v[jj][i]=z*c-x*s;
}
z=pythag(f,h);
w[j]=z;
if (z) {
z=1.0/z;
c=f*z;
s=h*z;
}
f=c*g+s*y;
x=c*y-s*g;
for (jj=1;jj<=m;jj++) {
y=a[jj][j];
z=a[jj][i];
a[jj][j]=y*c+z*s;
a[jj][i]=z*c-y*s;
}
}
rv1[l-1]=0.0;
rv1[k-1]=f;
w[k]=x;
}
}
delete[] rv1;
}
/* ************************************************************************* */