176 lines
5.6 KiB
C++
176 lines
5.6 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file triangulation.h
|
|
* @brief Functions for triangulation
|
|
* @date July 31, 2013
|
|
* @author Chris Beall
|
|
* @author Akshay Krishnan
|
|
*/
|
|
|
|
#include <gtsam/geometry/triangulation.h>
|
|
|
|
#include <gtsam/geometry/PinholeCamera.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
|
|
namespace gtsam {
|
|
|
|
Vector4 triangulateHomogeneousDLT(
|
|
const std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>>&
|
|
projection_matrices,
|
|
const Point2Vector& measurements, double rank_tol) {
|
|
// number of cameras
|
|
size_t m = projection_matrices.size();
|
|
|
|
// Allocate DLT matrix
|
|
Matrix A = Matrix::Zero(m * 2, 4);
|
|
|
|
for (size_t i = 0; i < m; i++) {
|
|
size_t row = i * 2;
|
|
const Matrix34& projection = projection_matrices.at(i);
|
|
const Point2& p = measurements.at(i);
|
|
|
|
// build system of equations
|
|
// [A_1; A_2; A_3] x = [b_1; b_2; b_3]
|
|
// [b_3 * A_1 - b_1 * A_3] x = 0
|
|
// [b_3 * A_2 - b_2 * A_3] x = 0
|
|
// A' x = 0
|
|
// A' 2x4 = [b_3 * A_1 - b_1 * A_3; b_3 * A_2 - b_2 * A_3]
|
|
A.row(row) = p.x() * projection.row(2) - projection.row(0);
|
|
A.row(row + 1) = p.y() * projection.row(2) - projection.row(1);
|
|
}
|
|
int rank;
|
|
double error;
|
|
Vector v;
|
|
boost::tie(rank, error, v) = DLT(A, rank_tol);
|
|
|
|
if (rank < 3) throw(TriangulationUnderconstrainedException());
|
|
|
|
return v;
|
|
}
|
|
|
|
Vector4 triangulateHomogeneousDLT(
|
|
const std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>>&
|
|
projection_matrices,
|
|
const std::vector<Unit3>& measurements, double rank_tol) {
|
|
// number of cameras
|
|
size_t m = projection_matrices.size();
|
|
|
|
// Allocate DLT matrix
|
|
Matrix A = Matrix::Zero(m * 2, 4);
|
|
|
|
for (size_t i = 0; i < m; i++) {
|
|
size_t row = i * 2;
|
|
const Matrix34& projection = projection_matrices.at(i);
|
|
const Point3& p =
|
|
measurements.at(i)
|
|
.point3(); // to get access to x,y,z of the bearing vector
|
|
|
|
// build system of equations
|
|
A.row(row) = p.x() * projection.row(2) - p.z() * projection.row(0);
|
|
A.row(row + 1) = p.y() * projection.row(2) - p.z() * projection.row(1);
|
|
}
|
|
int rank;
|
|
double error;
|
|
Vector v;
|
|
boost::tie(rank, error, v) = DLT(A, rank_tol);
|
|
|
|
if (rank < 3) throw(TriangulationUnderconstrainedException());
|
|
|
|
return v;
|
|
}
|
|
|
|
Point3 triangulateLOST(const std::vector<Pose3>& poses,
|
|
const Point3Vector& calibratedMeasurements,
|
|
const SharedIsotropic& measurementNoise) {
|
|
size_t m = calibratedMeasurements.size();
|
|
assert(m == poses.size());
|
|
|
|
// Construct the system matrices.
|
|
Matrix A = Matrix::Zero(m * 2, 3);
|
|
Matrix b = Matrix::Zero(m * 2, 1);
|
|
|
|
for (size_t i = 0; i < m; i++) {
|
|
const Pose3& wTi = poses[i];
|
|
// TODO(akshay-krishnan): are there better ways to select j?
|
|
const int j = (i + 1) % m;
|
|
const Pose3& wTj = poses[j];
|
|
|
|
const Point3 d_ij = wTj.translation() - wTi.translation();
|
|
|
|
const Point3 wZi = wTi.rotation().rotate(calibratedMeasurements[i]);
|
|
const Point3 wZj = wTj.rotation().rotate(calibratedMeasurements[j]);
|
|
|
|
// Note: Setting q_i = 1.0 gives same results as DLT.
|
|
const double q_i = wZi.cross(wZj).norm() /
|
|
(measurementNoise->sigma() * d_ij.cross(wZj).norm());
|
|
|
|
const Matrix23 coefficientMat =
|
|
q_i * skewSymmetric(calibratedMeasurements[i]).topLeftCorner(2, 3) *
|
|
wTi.rotation().matrix().transpose();
|
|
|
|
A.block<2, 3>(2 * i, 0) << coefficientMat;
|
|
b.block<2, 1>(2 * i, 0) << coefficientMat * wTi.translation();
|
|
}
|
|
return A.colPivHouseholderQr().solve(b);
|
|
}
|
|
|
|
Point3 triangulateDLT(
|
|
const std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>>&
|
|
projection_matrices,
|
|
const Point2Vector& measurements, double rank_tol) {
|
|
Vector4 v =
|
|
triangulateHomogeneousDLT(projection_matrices, measurements, rank_tol);
|
|
// Create 3D point from homogeneous coordinates
|
|
return Point3(v.head<3>() / v[3]);
|
|
}
|
|
|
|
Point3 triangulateDLT(
|
|
const std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>>&
|
|
projection_matrices,
|
|
const std::vector<Unit3>& measurements, double rank_tol) {
|
|
// contrary to previous triangulateDLT, this is now taking Unit3 inputs
|
|
Vector4 v =
|
|
triangulateHomogeneousDLT(projection_matrices, measurements, rank_tol);
|
|
// Create 3D point from homogeneous coordinates
|
|
return Point3(v.head<3>() / v[3]);
|
|
}
|
|
|
|
/**
|
|
* Optimize for triangulation
|
|
* @param graph nonlinear factors for projection
|
|
* @param values initial values
|
|
* @param landmarkKey to refer to landmark
|
|
* @return refined Point3
|
|
*/
|
|
Point3 optimize(const NonlinearFactorGraph& graph, const Values& values,
|
|
Key landmarkKey) {
|
|
// Maybe we should consider Gauss-Newton?
|
|
LevenbergMarquardtParams params;
|
|
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
|
params.verbosity = NonlinearOptimizerParams::ERROR;
|
|
params.lambdaInitial = 1;
|
|
params.lambdaFactor = 10;
|
|
params.maxIterations = 100;
|
|
params.absoluteErrorTol = 1.0;
|
|
params.verbosityLM = LevenbergMarquardtParams::SILENT;
|
|
params.verbosity = NonlinearOptimizerParams::SILENT;
|
|
params.linearSolverType = NonlinearOptimizerParams::MULTIFRONTAL_CHOLESKY;
|
|
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, params);
|
|
Values result = optimizer.optimize();
|
|
|
|
return result.at<Point3>(landmarkKey);
|
|
}
|
|
|
|
} // namespace gtsam
|