455 lines
17 KiB
C++
455 lines
17 KiB
C++
/*
|
|
* QPSolver.cpp
|
|
* @brief:
|
|
* @date: Apr 15, 2014
|
|
* @author: thduynguyen
|
|
*/
|
|
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/inference/FactorGraph-inst.h>
|
|
#include <gtsam_unstable/linear/QPSolver.h>
|
|
#include <gtsam_unstable/linear/LPSolver.h>
|
|
|
|
#include <boost/range/adaptor/map.hpp>
|
|
|
|
using namespace std;
|
|
|
|
#define ACTIVE 0.0
|
|
#define INACTIVE std::numeric_limits<double>::infinity()
|
|
|
|
namespace gtsam {
|
|
|
|
//******************************************************************************
|
|
QPSolver::QPSolver(const QP& qp) : qp_(qp) {
|
|
baseGraph_ = qp_.cost;
|
|
baseGraph_.push_back(qp_.equalities.begin(), qp_.equalities.end());
|
|
costVariableIndex_ = VariableIndex(qp_.cost);
|
|
equalityVariableIndex_ = VariableIndex(qp_.equalities);
|
|
inequalityVariableIndex_ = VariableIndex(qp_.inequalities);
|
|
constrainedKeys_ = qp_.equalities.keys();
|
|
constrainedKeys_.merge(qp_.inequalities.keys());
|
|
}
|
|
|
|
//******************************************************************************
|
|
VectorValues QPSolver::solveWithCurrentWorkingSet(
|
|
const LinearInequalityFactorGraph& workingSet) const {
|
|
GaussianFactorGraph workingGraph = baseGraph_;
|
|
workingGraph.push_back(workingSet);
|
|
return workingGraph.optimize();
|
|
}
|
|
|
|
//******************************************************************************
|
|
JacobianFactor::shared_ptr QPSolver::createDualFactor(Key key,
|
|
const LinearInequalityFactorGraph& workingSet, const VectorValues& delta) const {
|
|
|
|
// Transpose the A matrix of constrained factors to have the jacobian of the dual key
|
|
std::vector<std::pair<Key, Matrix> > Aterms = collectDualJacobians
|
|
< LinearEquality > (key, qp_.equalities, equalityVariableIndex_);
|
|
std::vector<std::pair<Key, Matrix> > AtermsInequalities = collectDualJacobians
|
|
< LinearInequality > (key, workingSet, inequalityVariableIndex_);
|
|
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
|
|
AtermsInequalities.end());
|
|
|
|
// Collect the gradients of unconstrained cost factors to the b vector
|
|
Vector b = zero(delta.at(key).size());
|
|
BOOST_FOREACH(size_t factorIx, costVariableIndex_[key]) {
|
|
GaussianFactor::shared_ptr factor = qp_.cost.at(factorIx);
|
|
b += factor->gradient(key, delta);
|
|
}
|
|
return boost::make_shared<JacobianFactor>(Aterms, b);
|
|
}
|
|
|
|
//******************************************************************************
|
|
GaussianFactorGraph::shared_ptr QPSolver::buildDualGraph(
|
|
const LinearInequalityFactorGraph& workingSet, const VectorValues& delta) const {
|
|
GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph());
|
|
BOOST_FOREACH(Key key, constrainedKeys_) {
|
|
// Each constrained key becomes a factor in the dual graph
|
|
dualGraph->push_back(createDualFactor(key, workingSet, delta));
|
|
}
|
|
return dualGraph;
|
|
}
|
|
|
|
//******************************************************************************
|
|
pair<int, int> QPSolver::identifyLeavingConstraint(
|
|
const LinearInequalityFactorGraph& workingSet,
|
|
const VectorValues& lambdas) const {
|
|
int worstFactorIx = -1, worstSigmaIx = -1;
|
|
// preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
|
|
// inactive or a good inequality constraint, so we don't care!
|
|
double maxLambda = 0.0;
|
|
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
|
|
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
|
|
Vector lambda = lambdas.at(factor->dualKey());
|
|
Vector sigmas = factor->get_model()->sigmas();
|
|
for (size_t j = 0; j < sigmas.size(); ++j)
|
|
// If it is an active constraint, and lambda is larger than the current max
|
|
if (sigmas[j] == ACTIVE && lambda[j] > maxLambda) {
|
|
worstFactorIx = factorIx;
|
|
worstSigmaIx = j;
|
|
maxLambda = lambda[j];
|
|
}
|
|
}
|
|
return make_pair(worstFactorIx, worstSigmaIx);
|
|
}
|
|
|
|
//******************************************************************************
|
|
LinearInequalityFactorGraph QPSolver::updateWorkingSet(
|
|
const LinearInequalityFactorGraph& workingSet, int factorIx, int sigmaIx,
|
|
double state) const {
|
|
LinearInequalityFactorGraph newWorkingSet = workingSet;
|
|
if (factorIx < 0 || sigmaIx < 0)
|
|
return newWorkingSet;
|
|
Vector sigmas = newWorkingSet.at(factorIx)->get_model()->sigmas();
|
|
sigmas[sigmaIx] = state;
|
|
newWorkingSet.at(factorIx)->setModel(true, sigmas);
|
|
return newWorkingSet;
|
|
}
|
|
|
|
//******************************************************************************
|
|
/* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
|
|
* If some inactive inequality constraints complain about the full step (alpha = 1),
|
|
* we have to adjust alpha to stay within the inequality constraints' feasible regions.
|
|
*
|
|
* For each inactive inequality j:
|
|
* - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints
|
|
* - We want: aj'*(xk + alpha*p) - bj <= 0
|
|
* - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
|
|
* it's good!
|
|
* - We only care when aj'*p > 0. In this case, we need to choose alpha so that
|
|
* aj'*xk + alpha*aj'*p - bj <= 0 --> alpha <= (bj - aj'*xk) / (aj'*p)
|
|
* We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
|
|
*
|
|
* We want the minimum of all those alphas among all inactive inequality.
|
|
*/
|
|
boost::tuple<double, int, int> QPSolver::computeStepSize(
|
|
const LinearInequalityFactorGraph& workingSet, const VectorValues& xk,
|
|
const VectorValues& p) const {
|
|
static bool debug = false;
|
|
|
|
double minAlpha = 1.0;
|
|
int closestFactorIx = -1, closestSigmaIx = -1;
|
|
for(size_t factorIx = 0; factorIx<workingSet.size(); ++factorIx) {
|
|
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
|
|
Vector sigmas = factor->get_model()->sigmas();
|
|
Vector b = factor->getb();
|
|
for (size_t s = 0; s < sigmas.size(); ++s) {
|
|
// If it is an inactive inequality, compute alpha and update min
|
|
if (sigmas[s] == INACTIVE) {
|
|
// Compute aj'*p
|
|
double ajTp = factor->dotProductRow(s, p);
|
|
|
|
// Check if aj'*p >0. Don't care if it's not.
|
|
if (ajTp <= 0)
|
|
continue;
|
|
|
|
// Compute aj'*xk
|
|
double ajTx = factor->dotProductRow(s, xk);
|
|
|
|
// alpha = (bj - aj'*xk) / (aj'*p)
|
|
double alpha = (b[s] - ajTx) / ajTp;
|
|
if (debug)
|
|
cout << "alpha: " << alpha << endl;
|
|
|
|
// We want the minimum of all those max alphas
|
|
if (alpha < minAlpha) {
|
|
closestFactorIx = factorIx;
|
|
closestSigmaIx = s;
|
|
minAlpha = alpha;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return boost::make_tuple(minAlpha, closestFactorIx, closestSigmaIx);
|
|
}
|
|
|
|
//******************************************************************************
|
|
QPState QPSolver::iterate(const QPState& state) const {
|
|
static bool debug = false;
|
|
|
|
// Solve with the current working set
|
|
VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet);
|
|
if (debug)
|
|
newValues.print("New solution:");
|
|
|
|
// If we CAN'T move further
|
|
if (newValues.equals(state.values, 1e-5)) {
|
|
// Compute lambda from the dual graph
|
|
if (debug)
|
|
cout << "Building dual graph..." << endl;
|
|
GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet, newValues);
|
|
if (debug)
|
|
dualGraph->print("Dual graph: ");
|
|
VectorValues duals = dualGraph->optimize();
|
|
if (debug)
|
|
duals.print("Duals :");
|
|
|
|
int leavingFactor, leavingSigmaIx;
|
|
boost::tie(leavingFactor, leavingSigmaIx) = //
|
|
identifyLeavingConstraint(state.workingSet, duals);
|
|
if (debug)
|
|
cout << "violated active inequality - factorIx, sigmaIx: " << leavingFactor
|
|
<< " " << leavingSigmaIx << endl;
|
|
|
|
// If all inequality constraints are satisfied: We have the solution!!
|
|
if (leavingFactor < 0 || leavingSigmaIx < 0) {
|
|
return QPState(newValues, duals, state.workingSet, true);
|
|
}
|
|
else {
|
|
// Inactivate the leaving constraint
|
|
LinearInequalityFactorGraph newWorkingSet = updateWorkingSet(
|
|
state.workingSet, leavingFactor, leavingSigmaIx, INACTIVE);
|
|
return QPState(newValues, duals, newWorkingSet, false);
|
|
}
|
|
}
|
|
else {
|
|
// If we CAN make some progress
|
|
// Adapt stepsize if some inactive constraints complain about this move
|
|
double alpha;
|
|
int factorIx, sigmaIx;
|
|
VectorValues p = newValues - state.values;
|
|
boost::tie(alpha, factorIx, sigmaIx) = //
|
|
computeStepSize(state.workingSet, state.values, p);
|
|
if (debug)
|
|
cout << "alpha, factorIx, sigmaIx: " << alpha << " " << factorIx << " "
|
|
<< sigmaIx << endl;
|
|
// also add to the working set the one that complains the most
|
|
LinearInequalityFactorGraph newWorkingSet = //
|
|
updateWorkingSet(state.workingSet, factorIx, sigmaIx, ACTIVE);
|
|
|
|
// step!
|
|
newValues = state.values + alpha * p;
|
|
|
|
return QPState(newValues, state.duals, newWorkingSet, false);
|
|
}
|
|
}
|
|
|
|
//******************************************************************************
|
|
pair<VectorValues, VectorValues> QPSolver::optimize(
|
|
const VectorValues& initialValues) const {
|
|
|
|
// TODO: initialize workingSet from the feasible initialValues
|
|
LinearInequalityFactorGraph workingSet(qp_.inequalities);
|
|
|
|
QPState state(initialValues, VectorValues(), workingSet, false);
|
|
|
|
/// main loop of the solver
|
|
while (!state.converged) {
|
|
state = iterate(state);
|
|
}
|
|
|
|
return make_pair(state.values, state.duals);
|
|
}
|
|
|
|
//******************************************************************************
|
|
std::pair<bool, Key> QPSolver::maxKey(const FastSet<Key>& keys) const {
|
|
KeySet::iterator maxEl = std::max_element(keys.begin(), keys.end());
|
|
if (maxEl==keys.end())
|
|
return make_pair(false, 0);
|
|
return make_pair(true, *maxEl);
|
|
}
|
|
|
|
//******************************************************************************
|
|
boost::tuple<VectorValues, Key, Key> QPSolver::initialValuesLP() const {
|
|
// Key for the first slack variable = maximum key + 1
|
|
size_t firstSlackKey;
|
|
bool found;
|
|
KeySet allKeys = qp_.cost.keys();
|
|
allKeys.merge(qp_.equalities.keys());
|
|
allKeys.merge(qp_.inequalities.keys());
|
|
boost::tie(found, firstSlackKey) = maxKey(allKeys);
|
|
firstSlackKey += 1;
|
|
|
|
VectorValues initialValues;
|
|
// Create zero values for constrained vars
|
|
BOOST_FOREACH(const LinearEquality::shared_ptr& factor, qp_.equalities) {
|
|
KeyVector keys = factor->keys();
|
|
BOOST_FOREACH(Key key, keys) {
|
|
if (!initialValues.exists(key)) {
|
|
size_t dim = factor->getDim(factor->find(key));
|
|
initialValues.insert(key, zero(dim));
|
|
}
|
|
}
|
|
}
|
|
|
|
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, qp_.inequalities) {
|
|
KeyVector keys = factor->keys();
|
|
BOOST_FOREACH(Key key, keys) {
|
|
if (!initialValues.exists(key)) {
|
|
size_t dim = factor->getDim(factor->find(key));
|
|
initialValues.insert(key, zero(dim));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Insert initial values for slack variables
|
|
Key slackKey = firstSlackKey;
|
|
// Equality: zi = |bi|
|
|
BOOST_FOREACH(const LinearEquality::shared_ptr& factor, qp_.equalities) {
|
|
Vector errorAtZero = factor->getb();
|
|
Vector slackInit = errorAtZero.cwiseAbs();
|
|
initialValues.insert(slackKey, slackInit);
|
|
slackKey++;
|
|
}
|
|
// Inequality: zi = max(bi, 0)
|
|
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, qp_.inequalities) {
|
|
Vector errorAtZero = factor->getb();
|
|
Vector zeroVec = zero(errorAtZero.size());
|
|
Vector slackInit = errorAtZero.cwiseMax(zeroVec);
|
|
initialValues.insert(slackKey, slackInit);
|
|
slackKey++;
|
|
}
|
|
|
|
return boost::make_tuple(initialValues, firstSlackKey, slackKey - 1);
|
|
}
|
|
|
|
//******************************************************************************
|
|
VectorValues QPSolver::objectiveCoeffsLP(Key firstSlackKey) const {
|
|
VectorValues slackObjective;
|
|
|
|
Key slackKey = firstSlackKey;
|
|
// Equalities
|
|
BOOST_FOREACH(const LinearEquality::shared_ptr& factor, qp_.equalities) {
|
|
size_t dim = factor->rows();
|
|
slackObjective.insert(slackKey, ones(dim));
|
|
slackKey++;
|
|
}
|
|
|
|
// Inequalities
|
|
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, qp_.inequalities) {
|
|
size_t dim = factor->rows();
|
|
slackObjective.insert(slackKey, ones(dim));
|
|
slackKey++;
|
|
}
|
|
|
|
return slackObjective;
|
|
}
|
|
|
|
//******************************************************************************
|
|
boost::tuple<LinearEqualityFactorGraph::shared_ptr,
|
|
LinearInequalityFactorGraph::shared_ptr, VectorValues> QPSolver::constraintsLP(
|
|
Key firstSlackKey) const {
|
|
// Create constraints and zero lower bounds (zi>=0)
|
|
LinearEqualityFactorGraph::shared_ptr equalities(new LinearEqualityFactorGraph());
|
|
LinearInequalityFactorGraph::shared_ptr inequalities(new LinearInequalityFactorGraph());
|
|
VectorValues slackLowerBounds;
|
|
|
|
Key slackKey = firstSlackKey;
|
|
|
|
// Equalities
|
|
BOOST_FOREACH(const LinearEquality::shared_ptr& factor, qp_.equalities) {
|
|
// Collect old terms to form a new factor
|
|
// TODO: it might be faster if we can get the whole block matrix at once
|
|
// but I don't know how to extend the current VerticalBlockMatrix
|
|
vector<pair<Key, Matrix> > terms;
|
|
for (Factor::iterator it = factor->begin(); it != factor->end(); ++it) {
|
|
terms.push_back(make_pair(*it, factor->getA(it)));
|
|
}
|
|
|
|
Vector b = factor->getb();
|
|
Vector sign_b = b.cwiseQuotient(b.cwiseAbs());
|
|
terms.push_back(make_pair(slackKey, sign_b));
|
|
equalities->push_back(LinearEquality(terms, b, factor->dualKey()));
|
|
|
|
// Add lower bound for this slack key
|
|
slackLowerBounds.insert(slackKey, zero(b.rows()));
|
|
// Increase slackKey for the next slack variable
|
|
slackKey++;
|
|
}
|
|
|
|
// Inequalities
|
|
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, qp_.inequalities) {
|
|
// Collect old terms to form a new factor
|
|
// TODO: it might be faster if we can get the whole block matrix at once
|
|
// but I don't know how to extend the current VerticalBlockMatrix
|
|
vector<pair<Key, Matrix> > terms;
|
|
for (Factor::iterator it = factor->begin(); it != factor->end(); ++it) {
|
|
terms.push_back(make_pair(*it, factor->getA(it)));
|
|
}
|
|
|
|
// Add the slack term to the constraint
|
|
// Unlike Nocedal06book, pg.473, we want ax-z <= b, since we always assume
|
|
// LE constraints ax <= b.
|
|
size_t dim = factor->rows();
|
|
terms.push_back(make_pair(slackKey, -eye(dim)));
|
|
inequalities->push_back(LinearInequality(terms, factor->getb(),
|
|
factor->dualKey()));
|
|
|
|
// Add lower bound for this slack key
|
|
slackLowerBounds.insert(slackKey, zero(dim));
|
|
// Increase slackKey for the next slack variable
|
|
slackKey++;
|
|
}
|
|
|
|
return boost::make_tuple(equalities, inequalities, slackLowerBounds);
|
|
}
|
|
|
|
//******************************************************************************
|
|
pair<bool, VectorValues> QPSolver::findFeasibleInitialValues() const {
|
|
static const bool debug = false;
|
|
// Initial values with slack variables for the LP subproblem, Nocedal06book, pg.473
|
|
VectorValues initialValues;
|
|
size_t firstSlackKey, lastSlackKey;
|
|
boost::tie(initialValues, firstSlackKey, lastSlackKey) = initialValuesLP();
|
|
|
|
// Coefficients for the LP subproblem objective function, min \sum_i z_i
|
|
VectorValues objectiveLP = objectiveCoeffsLP(firstSlackKey);
|
|
|
|
// Create constraints and lower bounds of slack variables
|
|
LinearEqualityFactorGraph::shared_ptr equalities;
|
|
LinearInequalityFactorGraph::shared_ptr inequalities;
|
|
VectorValues slackLowerBounds;
|
|
boost::tie(equalities, inequalities, slackLowerBounds) = constraintsLP(firstSlackKey);
|
|
|
|
// Solve the LP subproblem
|
|
LPSolver lpSolver(objectiveLP, equalities, inequalities, slackLowerBounds);
|
|
VectorValues solution = lpSolver.solve();
|
|
|
|
if (debug)
|
|
initialValues.print("Initials LP: ");
|
|
if (debug)
|
|
objectiveLP.print("Objective LP: ");
|
|
if (debug)
|
|
equalities->print("Equalities LP: ");
|
|
if (debug)
|
|
inequalities->print("Inequalities LP: ");
|
|
if (debug)
|
|
solution.print("LP solution: ");
|
|
|
|
// feasible when all slack values are 0s.
|
|
double slackSumAbs = 0.0;
|
|
for (Key key = firstSlackKey; key <= lastSlackKey; ++key) {
|
|
slackSumAbs += solution.at(key).cwiseAbs().sum();
|
|
}
|
|
|
|
// Remove slack variables from solution
|
|
for (Key key = firstSlackKey; key <= lastSlackKey; ++key) {
|
|
solution.erase(key);
|
|
}
|
|
|
|
// Insert zero vectors for free variables that are not in the constraints
|
|
BOOST_FOREACH(Key key, costVariableIndex_ | boost::adaptors::map_keys) {
|
|
if (!solution.exists(key)) {
|
|
GaussianFactor::shared_ptr factor = qp_.cost.at(
|
|
*costVariableIndex_[key].begin());
|
|
size_t dim = factor->getDim(factor->find(key));
|
|
solution.insert(key, zero(dim));
|
|
}
|
|
}
|
|
|
|
return make_pair(slackSumAbs < 1e-5, solution);
|
|
}
|
|
|
|
//******************************************************************************
|
|
pair<VectorValues, VectorValues> QPSolver::optimize() const {
|
|
bool isFeasible;
|
|
VectorValues initialValues;
|
|
boost::tie(isFeasible, initialValues) = findFeasibleInitialValues();
|
|
if (!isFeasible) {
|
|
throw runtime_error("LP subproblem is infeasible!");
|
|
}
|
|
return optimize(initialValues);
|
|
}
|
|
|
|
} /* namespace gtsam */
|