68 lines
2.6 KiB
Matlab
68 lines
2.6 KiB
Matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
% Atlanta, Georgia 30332-0415
|
|
% All Rights Reserved
|
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
%
|
|
% See LICENSE for the license information
|
|
%
|
|
% @brief Basic VO Example with 3 landmarks and two cameras
|
|
% @author Chris Beall
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
import gtsam.*
|
|
|
|
%% Assumptions
|
|
% - For simplicity this example is in the camera's coordinate frame
|
|
% - X: right, Y: down, Z: forward
|
|
% - Pose x1 is at the origin, Pose 2 is 1 meter forward (along Z-axis)
|
|
% - x1 is fixed with a constraint, x2 is initialized with noisy values
|
|
% - No noise on measurements
|
|
|
|
%% Create keys for variables
|
|
x1 = symbol('x',1); x2 = symbol('x',2);
|
|
l1 = symbol('l',1); l2 = symbol('l',2); l3 = symbol('l',3);
|
|
|
|
%% Create graph container and add factors to it
|
|
graph = NonlinearFactorGraph;
|
|
|
|
%% add a constraint on the starting pose
|
|
first_pose = Pose3();
|
|
graph.add(NonlinearEqualityPose3(x1, first_pose));
|
|
|
|
%% Create realistic calibration and measurement noise model
|
|
% format: fx fy skew cx cy baseline
|
|
K = Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2);
|
|
stereo_model = noiseModel.Diagonal.Sigmas([1.0; 1.0; 1.0]);
|
|
|
|
%% Add measurements
|
|
% pose 1
|
|
graph.add(GenericStereoFactor3D(StereoPoint2(520, 480, 440), stereo_model, x1, l1, K));
|
|
graph.add(GenericStereoFactor3D(StereoPoint2(120, 80, 440), stereo_model, x1, l2, K));
|
|
graph.add(GenericStereoFactor3D(StereoPoint2(320, 280, 140), stereo_model, x1, l3, K));
|
|
|
|
%pose 2
|
|
graph.add(GenericStereoFactor3D(StereoPoint2(570, 520, 490), stereo_model, x2, l1, K));
|
|
graph.add(GenericStereoFactor3D(StereoPoint2( 70, 20, 490), stereo_model, x2, l2, K));
|
|
graph.add(GenericStereoFactor3D(StereoPoint2(320, 270, 115), stereo_model, x2, l3, K));
|
|
|
|
%% Create initial estimate for camera poses and landmarks
|
|
initialEstimate = Values;
|
|
initialEstimate.insert(x1, first_pose);
|
|
% noisy estimate for pose 2
|
|
initialEstimate.insert(x2, Pose3(Rot3(), Point3(0.1,-.1,1.1)));
|
|
expected_l1 = Point3( 1, 1, 5);
|
|
initialEstimate.insert(l1, expected_l1);
|
|
initialEstimate.insert(l2, Point3(-1, 1, 5));
|
|
initialEstimate.insert(l3, Point3( 0,-.5, 5));
|
|
|
|
%% optimize
|
|
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
|
|
result = optimizer.optimize();
|
|
|
|
%% check equality for the first pose and point
|
|
pose_x1 = result.atPose3(x1);
|
|
CHECK('pose_x1.equals(first_pose,1e-4)',pose_x1.equals(first_pose,1e-4));
|
|
|
|
point_l1 = result.atPoint3(l1);
|
|
CHECK('point_1.equals(expected_l1,1e-4)',norm(point_l1 - expected_l1) < 1e-4); |