76 lines
2.6 KiB
Matlab
76 lines
2.6 KiB
Matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
% Atlanta, Georgia 30332-0415
|
|
% All Rights Reserved
|
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
%
|
|
% See LICENSE for the license information
|
|
%
|
|
% @brief Basic VO Example with 3 landmarks and two cameras
|
|
% @author Chris Beall
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
import gtsam.*
|
|
|
|
%% Assumptions
|
|
% - For simplicity this example is in the camera's coordinate frame
|
|
% - X: right, Y: down, Z: forward
|
|
% - Pose x1 is at the origin, Pose 2 is 1 meter forward (along Z-axis)
|
|
% - x1 is fixed with a constraint, x2 is initialized with noisy values
|
|
% - No noise on measurements
|
|
|
|
%% Create keys for variables
|
|
x1 = symbol('x',1); x2 = symbol('x',2);
|
|
l1 = symbol('l',1); l2 = symbol('l',2); l3 = symbol('l',3);
|
|
|
|
%% Create graph container and add factors to it
|
|
graph = NonlinearFactorGraph;
|
|
|
|
%% add a constraint on the starting pose
|
|
first_pose = Pose3();
|
|
graph.add(NonlinearEqualityPose3(x1, first_pose));
|
|
|
|
%% Create realistic calibration and measurement noise model
|
|
% format: fx fy skew cx cy baseline
|
|
K = Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2);
|
|
stereo_model = noiseModel.Isotropic.Sigma(3,1);
|
|
|
|
%% Add measurements
|
|
% pose 1
|
|
graph.add(GenericStereoFactor3D(StereoPoint2(520, 480, 440), stereo_model, x1, l1, K));
|
|
graph.add(GenericStereoFactor3D(StereoPoint2(120, 80, 440), stereo_model, x1, l2, K));
|
|
graph.add(GenericStereoFactor3D(StereoPoint2(320, 280, 140), stereo_model, x1, l3, K));
|
|
|
|
%pose 2
|
|
graph.add(GenericStereoFactor3D(StereoPoint2(570, 520, 490), stereo_model, x2, l1, K));
|
|
graph.add(GenericStereoFactor3D(StereoPoint2( 70, 20, 490), stereo_model, x2, l2, K));
|
|
graph.add(GenericStereoFactor3D(StereoPoint2(320, 270, 115), stereo_model, x2, l3, K));
|
|
|
|
|
|
%% Create initial estimate for camera poses and landmarks
|
|
initialEstimate = Values;
|
|
initialEstimate.insert(x1, first_pose);
|
|
% noisy estimate for pose 2
|
|
initialEstimate.insert(x2, Pose3(Rot3(), [0.1, -.1, 1.1]'));
|
|
initialEstimate.insert(l1, [ 1, 1, 5]');
|
|
initialEstimate.insert(l2, [-1, 1, 5]');
|
|
initialEstimate.insert(l3, [ 0,-.5, 5]');
|
|
|
|
%% optimize
|
|
fprintf(1,'Optimizing\n'); tic
|
|
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
|
|
result = optimizer.optimizeSafely();
|
|
toc
|
|
|
|
%% visualize initial trajectory, final trajectory, and final points
|
|
cla; hold on;
|
|
axis normal
|
|
axis([-1.5 1.5 -2 2 -1 6]);
|
|
axis equal
|
|
view(-38,12)
|
|
camup([0;1;0]);
|
|
|
|
plot3DTrajectory(initialEstimate, 'r', 1, 0.3);
|
|
plot3DTrajectory(result, 'g', 1, 0.3);
|
|
plot3DPoints(result);
|