196 lines
5.6 KiB
Matlab
196 lines
5.6 KiB
Matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
% Atlanta, Georgia 30332-0415
|
|
% All Rights Reserved
|
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
%
|
|
% See LICENSE for the license information
|
|
%
|
|
% @brief Read Robotics Institute range-only Plaza2 dataset and do iSAM
|
|
% @author Frank Dellaert
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%% preliminaries
|
|
clear
|
|
import gtsam.*
|
|
|
|
%% Find and load data file
|
|
% data available at http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/
|
|
% Datafile format (from http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/log.html)
|
|
% GT: Groundtruth path from GPS
|
|
% Time (sec) X_pose (m) Y_pose (m) Heading (rad)
|
|
% DR: Odometry Input (delta distance traveled and delta heading change)
|
|
% Time (sec) Delta Dist. Trav. (m) Delta Heading (rad)
|
|
% DRp: Dead Reckoned Path from Odometry
|
|
% Time (sec) X_pose (m) Y_pose (m) Heading (rad)
|
|
% TL: Surveyed Node Locations
|
|
% Time (sec) X_pose (m) Y_pose (m)
|
|
% TD
|
|
% Time (sec) Sender / Antenna ID Receiver Node ID Range (m)
|
|
if true % switch between data files
|
|
datafile = findExampleDataFile('Plaza1_.mat');
|
|
headingOffset=0;
|
|
minK=200; % minimum number of range measurements to process initially
|
|
incK=5; % minimum number of range measurements to process after
|
|
else
|
|
datafile = findExampleDataFile('Plaza2_.mat');
|
|
headingOffset=pi;
|
|
minK=150; % needs less for init
|
|
incK=25; % minimum number of range measurements to process after
|
|
end
|
|
load(datafile)
|
|
M=size(DR,1);
|
|
K=size(TD,1);
|
|
sigmaR = 100; % range standard deviation
|
|
sigmaInitial = 1; % draw initial landmark guess from Gaussian
|
|
useGroundTruth = false;
|
|
useRobust=true;
|
|
addRange=true;
|
|
batchInitialization=true;
|
|
|
|
%% Set Noise parameters
|
|
noiseModels.prior = noiseModel.Diagonal.Sigmas([1 1 pi]');
|
|
noiseModels.pointPrior = noiseModel.Diagonal.Sigmas([1 1]');
|
|
noiseModels.odometry = noiseModel.Diagonal.Sigmas([0.05 0.01 0.2]');
|
|
if useRobust
|
|
base = noiseModel.mEstimator.Tukey(15);
|
|
noiseModels.range = noiseModel.Robust(base,noiseModel.Isotropic.Sigma(1, sigmaR));
|
|
else
|
|
noiseModels.range = noiseModel.Isotropic.Sigma(1, sigmaR);
|
|
end
|
|
|
|
%% Initialize iSAM
|
|
isam = ISAM2;
|
|
|
|
%% Add prior on first pose
|
|
pose0 = Pose2(GT(1,2),GT(1,3),headingOffset+GT(1,4));
|
|
newFactors = NonlinearFactorGraph;
|
|
if ~addRange || ~useGroundTruth
|
|
newFactors.add(PriorFactorPose2(0,pose0,noiseModels.prior));
|
|
end
|
|
initial = Values;
|
|
initial.insert(0,pose0);
|
|
odo = Values;
|
|
odo.insert(0,pose0);
|
|
|
|
%% initialize points
|
|
if addRange
|
|
landmarkEstimates = Values;
|
|
for i=1:size(TL,1)
|
|
j=TL(i,1);
|
|
if useGroundTruth
|
|
Lj = Point2(TL(i,2),TL(i,3));
|
|
newFactors.add(PriorFactorPoint2(symbol('L',j),Lj,noiseModels.pointPrior));
|
|
else
|
|
Lj = Point2(sigmaInitial*randn,sigmaInitial*randn);
|
|
end
|
|
initial.insert(symbol('L',j),Lj);
|
|
landmarkEstimates.insert(symbol('L',j),Lj);
|
|
end
|
|
XY = utilities.extractPoint2(initial);
|
|
plot(XY(:,1),XY(:,2),'g*');
|
|
end
|
|
|
|
%% Loop over odometry
|
|
tic
|
|
k = 1; % range measurement counter
|
|
update = false;
|
|
lastPose = pose0;
|
|
odoPose = pose0;
|
|
countK = 0;
|
|
for i=1:M % M
|
|
|
|
% get odometry measurement
|
|
t = DR(i,1);
|
|
distance_traveled = DR(i,2);
|
|
delta_heading = DR(i,3);
|
|
|
|
% add odometry factor
|
|
odometry = Pose2(distance_traveled,0,delta_heading);
|
|
newFactors.add(BetweenFactorPose2(i-1, i, odometry, noiseModels.odometry));
|
|
|
|
% predict pose and update odometry
|
|
predictedOdo = odoPose.compose(odometry);
|
|
odoPose = predictedOdo;
|
|
odo.insert(i,predictedOdo);
|
|
|
|
% predict pose and add as initial estimate
|
|
predictedPose = lastPose.compose(odometry);
|
|
lastPose = predictedPose;
|
|
initial.insert(i,predictedPose);
|
|
landmarkEstimates.insert(i,predictedPose);
|
|
|
|
% Check if there are range factors to be added
|
|
while k<=K && t>=TD(k,1)
|
|
j = TD(k,3);
|
|
range = TD(k,4);
|
|
if addRange
|
|
factor = RangeFactor2D(i, symbol('L',j), range, noiseModels.range);
|
|
% Throw out obvious outliers based on current landmark estimates
|
|
error=factor.unwhitenedError(landmarkEstimates);
|
|
if k<=minK || abs(error)<5
|
|
newFactors.add(factor);
|
|
end
|
|
end
|
|
k=k+1; countK=countK+1; update = true;
|
|
end
|
|
|
|
% Check whether to update iSAM 2
|
|
if update && k>minK && countK>incK
|
|
if batchInitialization % Do a full optimize for first minK ranges
|
|
tic
|
|
batchOptimizer = LevenbergMarquardtOptimizer(newFactors, initial);
|
|
initial = batchOptimizer.optimize();
|
|
toc
|
|
batchInitialization = false; % only once
|
|
end
|
|
isam.update(newFactors, initial);
|
|
result = isam.calculateEstimate();
|
|
lastPose = result.atPose2(i);
|
|
% update landmark estimates
|
|
if addRange
|
|
landmarkEstimates = Values;
|
|
for jj=1:size(TL,1)
|
|
j=TL(jj,1);
|
|
key = symbol('L',j);
|
|
landmarkEstimates.insert(key,result.atPoint2(key));
|
|
end
|
|
end
|
|
newFactors = NonlinearFactorGraph;
|
|
initial = Values;
|
|
countK = 0;
|
|
end
|
|
|
|
% visualize
|
|
if mod(i,50)==0 && k>minK
|
|
figure(1);clf;hold on
|
|
|
|
% odometry
|
|
XYT = utilities.extractPose2(odo);
|
|
plot(XYT(:,1),XYT(:,2),'y-');
|
|
|
|
% lin point
|
|
lin = isam.getLinearizationPoint();
|
|
XYT = utilities.extractPose2(lin);
|
|
plot(XYT(:,1),XYT(:,2),'r.');
|
|
XY = utilities.extractPoint2(lin);
|
|
plot(XY(:,1),XY(:,2),'r*');
|
|
|
|
% result
|
|
result = isam.calculateEstimate();
|
|
XYT = utilities.extractPose2(result);
|
|
plot(XYT(:,1),XYT(:,2),'k-');
|
|
XY = utilities.extractPoint2(result);
|
|
plot(XY(:,1),XY(:,2),'k*');
|
|
axis equal
|
|
% pause
|
|
end
|
|
end
|
|
toc
|
|
|
|
%% Plot ground truth as well
|
|
plot(GT(:,2),GT(:,3),'g-');
|
|
plot(TL(:,2),TL(:,3),'g*');
|
|
|
|
|