gtsam/matlab/gtsam_examples/PlanarSLAMExample_sampling.m

77 lines
2.6 KiB
Matlab

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief Simple robotics example using the pre-built planar SLAM domain
% @author Alex Cunningham
% @author Frank Dellaert
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
import gtsam.*
%% Create the same factor graph as in PlanarSLAMExample
i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
graph = NonlinearFactorGraph;
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
graph.add(PriorFactorPose2(i1, priorMean, priorNoise)); % add directly to graph
odometry = Pose2(2.0, 0.0, 0.0);
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise));
graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise));
%% Except, for measurements we offer a choice
j1 = symbol('l',1); j2 = symbol('l',2);
degrees = pi/180;
brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
if 1
graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise));
graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise));
else
bearingModel = noiseModel.Diagonal.Sigmas(0.1);
graph.add(BearingFactor2D(i1, j1, Rot2(45*degrees), bearingModel));
graph.add(BearingFactor2D(i2, j1, Rot2(90*degrees), bearingModel));
end
graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise));
%% Initialize MCMC sampler with ground truth
sample = Values;
sample.insert(i1, Pose2(0,0,0));
sample.insert(i2, Pose2(2,0,0));
sample.insert(i3, Pose2(4,0,0));
sample.insert(j1, Point2(2,2));
sample.insert(j2, Point2(4,2));
%% Calculate and plot Covariance Ellipses
cla;hold on
marginals = Marginals(graph, sample);
plot2DTrajectory(sample, [], marginals);
plot2DPoints(sample, [], marginals);
for j=1:2
key = symbol('l',j);
point{j} = sample.atPoint2(key);
Q{j}=marginals.marginalCovariance(key);
S{j}=chol(Q{j}); % for sampling
end
p_j1 = sample.atPoint2(j1);
p_j2 = sample.atPoint2(j2);
plot([sample.atPose2(i1).x; p_j1(1)],[sample.atPose2(i1).y; p_j1(2)], 'c-');
plot([sample.atPose2(i2).x; p_j1(1)],[sample.atPose2(i2).y; p_j1(2)], 'c-');
plot([sample.atPose2(i3).x; p_j2(1)],[sample.atPose2(i3).y; p_j2(2)], 'c-');
view(2); axis auto; axis equal
%% Do Sampling on point 2
N=1000;
for s=1:N
delta = S{2}*randn(2,1);
proposedPoint = Point2(point{2} + delta);
plotPoint2(proposedPoint,'k.')
end