gtsam/gtsam_unstable/slam/SmartStereoProjectionFactor...

307 lines
12 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartStereoProjectionFactorPP.h
* @brief Smart stereo factor on poses (P) and camera extrinsic pose (P) calibrations
* @author Luca Carlone
* @author Frank Dellaert
*/
#pragma once
#include <gtsam_unstable/slam/SmartStereoProjectionFactor.h>
namespace gtsam {
/**
*
* @ingroup slam
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert,
* Eliminating conditionally independent sets in factor graphs:
* a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*/
/**
* This factor optimizes the pose of the body as well as the extrinsic camera
* calibration (pose of camera wrt body). Each camera may have its own extrinsic
* calibration or the same calibration can be shared by multiple cameras. This
* factor requires that values contain the involved poses and extrinsics (both
* are Pose3 variables).
* @ingroup slam
*/
class GTSAM_UNSTABLE_EXPORT SmartStereoProjectionFactorPP
: public SmartStereoProjectionFactor {
protected:
/// shared pointer to calibration object (one for each camera)
std::vector<std::shared_ptr<Cal3_S2Stereo>> K_all_;
/// The keys corresponding to the pose of the body (with respect to an external world frame) for each view
KeyVector world_P_body_keys_;
/// The keys corresponding to the extrinsic pose calibration for each view (pose that transform from camera to body)
KeyVector body_P_cam_keys_;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// shorthand for base class type
typedef SmartStereoProjectionFactor Base;
/// shorthand for this class
typedef SmartStereoProjectionFactorPP This;
/// shorthand for a smart pointer to a factor
typedef std::shared_ptr<This> shared_ptr;
static const int DimBlock = 12; ///< Camera dimension: 6 for body pose, 6 for extrinsic pose
static const int DimPose = 6; ///< Pose3 dimension
static const int ZDim = 3; ///< Measurement dimension (for a StereoPoint2 measurement)
typedef Eigen::Matrix<double, ZDim, DimBlock> MatrixZD; // F blocks (derivatives wrt camera)
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks; // vector of F blocks
/**
* Constructor
* @param Isotropic measurement noise
* @param params internal parameters of the smart factors
*/
SmartStereoProjectionFactorPP(const SharedNoiseModel& sharedNoiseModel,
const SmartStereoProjectionParams& params =
SmartStereoProjectionParams());
/**
* add a new measurement, with a pose key, and an extrinsic pose key
* @param measured is the 3-dimensional location of the projection of a
* single landmark in the a single (stereo) view (the measurement)
* @param world_P_body_key is the key corresponding to the body poses observing the same landmark
* @param body_P_cam_key is the key corresponding to the extrinsic camera-to-body pose calibration
* @param K is the (fixed) camera intrinsic calibration
*/
void add(const StereoPoint2& measured, const Key& world_P_body_key,
const Key& body_P_cam_key,
const std::shared_ptr<Cal3_S2Stereo>& K);
/**
* Variant of the previous one in which we include a set of measurements
* @param measurements vector of the 3m dimensional location of the projection
* of a single landmark in the m (stereo) view (the measurements)
* @param w_P_body_keys are the ordered keys corresponding to the body poses observing the same landmark
* @param body_P_cam_keys are the ordered keys corresponding to the extrinsic camera-to-body poses calibration
* (note: elements of this vector do not need to be unique: 2 camera views can share the same calibration)
* @param Ks vector of intrinsic calibration objects
*/
void add(const std::vector<StereoPoint2>& measurements,
const KeyVector& w_P_body_keys, const KeyVector& body_P_cam_keys,
const std::vector<std::shared_ptr<Cal3_S2Stereo>>& Ks);
/**
* Variant of the previous one in which we include a set of measurements with
* the same noise and calibration
* @param measurements vector of the 3m dimensional location of the projection
* of a single landmark in the m (stereo) view (the measurements)
* @param w_P_body_keys are the ordered keys corresponding to the body poses observing the same landmark
* @param body_P_cam_keys are the ordered keys corresponding to the extrinsic camera-to-body poses calibration
* (note: elements of this vector do not need to be unique: 2 camera views can share the same calibration)
* @param K the (known) camera calibration (same for all measurements)
*/
void add(const std::vector<StereoPoint2>& measurements,
const KeyVector& w_P_body_keys, const KeyVector& body_P_cam_keys,
const std::shared_ptr<Cal3_S2Stereo>& K);
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const override;
/// equals
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override;
/// equals
const KeyVector& getExtrinsicPoseKeys() const {
return body_P_cam_keys_;
}
/**
* error calculates the error of the factor.
*/
double error(const Values& values) const override;
/** return the calibration object */
inline std::vector<std::shared_ptr<Cal3_S2Stereo>> calibration() const {
return K_all_;
}
/**
* Collect all cameras involved in this factor
* @param values Values structure which must contain camera poses
* corresponding
* to keys involved in this factor
* @return vector of Values
*/
Base::Cameras cameras(const Values& values) const override;
/**
* Compute jacobian F, E and error vector at a given linearization point
* @param values Values structure which must contain camera poses
* corresponding to keys involved in this factor
* @return Return arguments are the camera jacobians Fs (including the jacobian with
* respect to both the body pose and extrinsic pose), the point Jacobian E,
* and the error vector b. Note that the jacobians are computed for a given point.
*/
void computeJacobiansAndCorrectForMissingMeasurements(
FBlocks& Fs, Matrix& E, Vector& b, const Values& values) const {
if (!result_) {
throw("computeJacobiansWithTriangulatedPoint");
} else { // valid result: compute jacobians
size_t numViews = measured_.size();
E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view (point jacobian)
b = Vector::Zero(3 * numViews); // a StereoPoint2 for each view
Matrix dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i, dProject_dPoseCam_i, Ei;
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_.at(i));
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i));
StereoCamera camera(
w_P_body.compose(body_P_cam, dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i),
K_all_[i]);
// get jacobians and error vector for current measurement
StereoPoint2 reprojectionError_i = StereoPoint2(
camera.project(*result_, dProject_dPoseCam_i, Ei) - measured_.at(i));
Eigen::Matrix<double, ZDim, DimBlock> J; // 3 x 12
J.block<ZDim, 6>(0, 0) = dProject_dPoseCam_i * dPoseCam_dPoseBody_i; // (3x6) * (6x6)
J.block<ZDim, 6>(0, 6) = dProject_dPoseCam_i * dPoseCam_dPoseExt_i; // (3x6) * (6x6)
// if the right pixel is invalid, fix jacobians
if (std::isnan(measured_.at(i).uR()))
{
J.block<1, 12>(1, 0) = Matrix::Zero(1, 12);
Ei.block<1, 3>(1, 0) = Matrix::Zero(1, 3);
reprojectionError_i = StereoPoint2(reprojectionError_i.uL(), 0.0,
reprojectionError_i.v());
}
// fit into the output structures
Fs.push_back(J);
size_t row = 3 * i;
b.segment<ZDim>(row) = -reprojectionError_i.vector();
E.block<3, 3>(row, 0) = Ei;
}
}
}
/// linearize and return a Hessianfactor that is an approximation of error(p)
std::shared_ptr<RegularHessianFactor<DimPose>> createHessianFactor(
const Values& values, const double lambda = 0.0,
bool diagonalDamping = false) const {
// we may have multiple cameras sharing the same extrinsic cals, hence the number
// of keys may be smaller than 2 * nrMeasurements (which is the upper bound where we
// have a body key and an extrinsic calibration key for each measurement)
size_t nrUniqueKeys = keys_.size();
// Create structures for Hessian Factors
KeyVector js;
std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
std::vector<Vector> gs(nrUniqueKeys);
if (this->measured_.size() != cameras(values).size())
throw std::runtime_error("SmartStereoProjectionHessianFactor: this->"
"measured_.size() inconsistent with input");
// triangulate 3D point at given linearization point
triangulateSafe(cameras(values));
// failed: return "empty/zero" Hessian
if (!result_) {
for (Matrix& m : Gs) m = Matrix::Zero(DimPose, DimPose);
for (Vector& v : gs) v = Vector::Zero(DimPose);
return std::make_shared<RegularHessianFactor<DimPose>>(keys_, Gs, gs,
0.0);
}
// compute Jacobian given triangulated 3D Point
FBlocks Fs;
Matrix F, E;
Vector b;
computeJacobiansAndCorrectForMissingMeasurements(Fs, E, b, values);
// Whiten using noise model
noiseModel_->WhitenSystem(E, b);
for (size_t i = 0; i < Fs.size(); i++) {
Fs[i] = noiseModel_->Whiten(Fs[i]);
}
// build augmented Hessian (with last row/column being the information vector)
Matrix3 P;
Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
// these are the keys that correspond to the blocks in augmentedHessian (output of SchurComplement)
KeyVector nonuniqueKeys;
for (size_t i = 0; i < world_P_body_keys_.size(); i++) {
nonuniqueKeys.push_back(world_P_body_keys_.at(i));
nonuniqueKeys.push_back(body_P_cam_keys_.at(i));
}
// but we need to get the augumented hessian wrt the unique keys in key_
SymmetricBlockMatrix augmentedHessianUniqueKeys =
Base::Cameras::template SchurComplementAndRearrangeBlocks<3, DimBlock,
DimPose>(
Fs, E, P, b, nonuniqueKeys, keys_);
return std::make_shared<RegularHessianFactor<DimPose>>(
keys_, augmentedHessianUniqueKeys);
}
/**
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
* @return a Gaussian factor
*/
std::shared_ptr<GaussianFactor> linearizeDamped(
const Values& values, const double lambda = 0.0) const {
// depending on flag set on construction we may linearize to different linear factors
switch (params_.linearizationMode) {
case HESSIAN:
return createHessianFactor(values, lambda);
default:
throw std::runtime_error(
"SmartStereoProjectionFactorPP: unknown linearization mode");
}
}
/// linearize
std::shared_ptr<GaussianFactor> linearize(const Values& values) const
override {
return linearizeDamped(values);
}
private:
#if GTSAM_ENABLE_BOOST_SERIALIZATION ///
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(K_all_);
}
#endif
};
// end of class declaration
/// traits
template<>
struct traits<SmartStereoProjectionFactorPP> : public Testable<
SmartStereoProjectionFactorPP> {
};
} // namespace gtsam