gtsam/gtsam_unstable/nonlinear/LinearizedFactor.cpp

248 lines
8.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file LinearizedFactor.cpp
* @brief A dummy factor that allows a linear factor to act as a nonlinear factor
* @author Alex Cunningham
*/
#include <gtsam_unstable/nonlinear/LinearizedFactor.h>
#include <iostream>
#include <cassert>
namespace gtsam {
/* ************************************************************************* */
LinearizedGaussianFactor::LinearizedGaussianFactor(
const GaussianFactor::shared_ptr& gaussian, const Values& lin_points)
: NonlinearFactor(gaussian->keys())
{
// Extract the keys and linearization points
for(const Key& key: gaussian->keys()) {
// extract linearization point
assert(lin_points.exists(key));
this->lin_points_.insert(key, lin_points.at(key));
}
}
/* ************************************************************************* */
// LinearizedJacobianFactor
/* ************************************************************************* */
LinearizedJacobianFactor::LinearizedJacobianFactor() {
}
/* ************************************************************************* */
LinearizedJacobianFactor::LinearizedJacobianFactor(
const JacobianFactor::shared_ptr& jacobian, const Values& lin_points)
: Base(jacobian, lin_points) {
// Create the dims array
size_t *dims = (size_t *)alloca(sizeof(size_t) * (jacobian->size() + 1));
size_t index = 0;
for(JacobianFactor::const_iterator iter = jacobian->begin(); iter != jacobian->end(); ++iter) {
dims[index++] = jacobian->getDim(iter);
}
dims[index] = 1;
// Update the BlockInfo accessor
Ab_ = VerticalBlockMatrix(dims, dims+jacobian->size()+1, jacobian->rows());
// Get the Ab matrix from the Jacobian factor, with any covariance baked in
Ab_.matrix() = jacobian->augmentedJacobian();
}
/* ************************************************************************* */
void LinearizedJacobianFactor::print(const std::string& s, const KeyFormatter& keyFormatter) const {
std::cout << s << std::endl;
std::cout << "Nonlinear Keys: ";
for(const Key& key: this->keys())
std::cout << keyFormatter(key) << " ";
std::cout << std::endl;
for(const_iterator key=begin(); key!=end(); ++key) {
std::cout << "A[" << keyFormatter(*key) << "]=\n" << A(*key) << std::endl;
}
std::cout << "b=\n" << b() << std::endl;
lin_points_.print("Linearization Point: ");
}
/* ************************************************************************* */
bool LinearizedJacobianFactor::equals(const NonlinearFactor& expected, double tol) const {
const This *e = dynamic_cast<const This*> (&expected);
if (e) {
Matrix thisMatrix = this->Ab_.range(0, Ab_.nBlocks());
Matrix rhsMatrix = e->Ab_.range(0, Ab_.nBlocks());
return Base::equals(expected, tol)
&& lin_points_.equals(e->lin_points_, tol)
&& equal_with_abs_tol(thisMatrix, rhsMatrix, tol);
} else {
return false;
}
}
/* ************************************************************************* */
double LinearizedJacobianFactor::error(const Values& c) const {
Vector errorVector = error_vector(c);
return 0.5 * errorVector.dot(errorVector);
}
/* ************************************************************************* */
std::shared_ptr<GaussianFactor>
LinearizedJacobianFactor::linearize(const Values& c) const {
// Create the 'terms' data structure for the Jacobian constructor
std::vector<std::pair<Key, Matrix> > terms;
for(Key key: keys()) {
terms.push_back(std::make_pair(key, this->A(key)));
}
// compute rhs
Vector b = -error_vector(c);
return std::shared_ptr<GaussianFactor>(new JacobianFactor(terms, b, noiseModel::Unit::Create(dim())));
}
/* ************************************************************************* */
Vector LinearizedJacobianFactor::error_vector(const Values& c) const {
Vector errorVector = -b();
for(Key key: this->keys()) {
const Value& newPt = c.at(key);
const Value& linPt = lin_points_.at(key);
Vector d = linPt.localCoordinates_(newPt);
const constABlock A = this->A(key);
errorVector += A * d;
}
return errorVector;
}
/* ************************************************************************* */
// LinearizedHessianFactor
/* ************************************************************************* */
LinearizedHessianFactor::LinearizedHessianFactor() {
}
/* ************************************************************************* */
LinearizedHessianFactor::LinearizedHessianFactor(
const HessianFactor::shared_ptr& hessian, const Values& lin_points)
: Base(hessian, lin_points), info_(hessian->info()) {}
/* ************************************************************************* */
void LinearizedHessianFactor::print(const std::string& s, const KeyFormatter& keyFormatter) const {
std::cout << s << std::endl;
std::cout << "Nonlinear Keys: ";
for(const Key& key: this->keys())
std::cout << keyFormatter(key) << " ";
std::cout << std::endl;
gtsam::print(Matrix(info_.selfadjointView()), "Ab^T * Ab: ");
lin_points_.print("Linearization Point: ");
}
/* ************************************************************************* */
bool LinearizedHessianFactor::equals(const NonlinearFactor& expected, double tol) const {
const This *e = dynamic_cast<const This*> (&expected);
if (e) {
Matrix thisMatrix = this->info_.selfadjointView();
thisMatrix(thisMatrix.rows()-1, thisMatrix.cols()-1) = 0.0;
Matrix rhsMatrix = e->info_.selfadjointView();
rhsMatrix(rhsMatrix.rows()-1, rhsMatrix.cols()-1) = 0.0;
return Base::equals(expected, tol)
&& lin_points_.equals(e->lin_points_, tol)
&& equal_with_abs_tol(thisMatrix, rhsMatrix, tol);
} else {
return false;
}
}
/* ************************************************************************* */
double LinearizedHessianFactor::error(const Values& c) const {
// Construct an error vector in key-order from the Values
Vector dx = Vector::Zero(dim());
size_t index = 0;
for(unsigned int i = 0; i < this->size(); ++i){
Key key = this->keys()[i];
const Value& newPt = c.at(key);
const Value& linPt = lin_points_.at(key);
dx.segment(index, linPt.dim()) = linPt.localCoordinates_(newPt);
index += linPt.dim();
}
// error 0.5*(f - 2*x'*g + x'*G*x)
double f = constantTerm();
double xtg = dx.dot(linearTerm());
double xGx = dx.transpose() * squaredTerm() * dx;
return 0.5 * (f - 2.0 * xtg + xGx);
}
/* ************************************************************************* */
std::shared_ptr<GaussianFactor>
LinearizedHessianFactor::linearize(const Values& c) const {
// Construct an error vector in key-order from the Values
Vector dx = Vector::Zero(dim());
size_t index = 0;
for(unsigned int i = 0; i < this->size(); ++i){
Key key = this->keys()[i];
const Value& newPt = c.at(key);
const Value& linPt = lin_points_.at(key);
dx.segment(index, linPt.dim()) = linPt.localCoordinates_(newPt);
index += linPt.dim();
}
// f2 = f1 - 2*dx'*g1 + dx'*G1*dx
//newInfo(this->size(), this->size())(0,0) += -2*dx.dot(linearTerm()) + dx.transpose() * squaredTerm().selfadjointView<Eigen::Upper>() * dx;
double f = constantTerm() - 2*dx.dot(linearTerm()) + dx.transpose() * squaredTerm() * dx;
// g2 = g1 - G1*dx
//newInfo.rangeColumn(0, this->size(), this->size(), 0) -= squaredTerm().selfadjointView<Eigen::Upper>() * dx;
Vector g = linearTerm() - squaredTerm() * dx;
std::vector<Vector> gs;
std::size_t offset = 0;
for(DenseIndex i = 0; i < info_.nBlocks()-1; ++i) {
const std::size_t dim = info_.getDim(i);
gs.push_back(g.segment(offset, dim));
offset += dim;
}
// G2 = G1
// Do Nothing
std::vector<Matrix> Gs;
for(DenseIndex i = 0; i < info_.nBlocks()-1; ++i) {
Gs.push_back(info_.diagonalBlock(i));
for(DenseIndex j = i + 1; j < info_.nBlocks()-1; ++j) {
Gs.push_back(info_.aboveDiagonalBlock(i, j));
}
}
// Create a Hessian Factor from the modified info matrix
//return std::shared_ptr<GaussianFactor>(new HessianFactor(js, newInfo));
return std::shared_ptr<GaussianFactor>(new HessianFactor(keys(), Gs, gs, f));
}
} // \namespace aspn