gtsam/gtsam_unstable/linear/tests/testQPSolver.cpp

439 lines
15 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testQPSolver.cpp
* @brief Test simple QP solver for a linear inequality constraint
* @date Apr 10, 2014
* @author Duy-Nguyen Ta
* @author Ivan Dario Jimenez
*/
#include <gtsam_unstable/linear/QPSParser.h>
#include <gtsam_unstable/linear/QPSolver.h>
#include <gtsam/base/Testable.h>
#include <gtsam/inference/Symbol.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using namespace gtsam::symbol_shorthand;
static const Vector kOne = Vector::Ones(1), kZero = Vector::Zero(1);
/* ************************************************************************* */
// Create test graph according to Forst10book_pg171Ex5
QP createTestCase() {
QP qp;
// Objective functions x1^2 - x1*x2 + x2^2 - 3*x1 + 5
// Note the Hessian encodes:
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
// Hence, we have G11=2, G12 = -1, g1 = +3, G22 = 2, g2 = 0, f = 10
//TODO: THIS TEST MIGHT BE WRONG : the last parameter might be 5 instead of 10 because the form of the equation
// Should be 0.5x'Gx + gx + f : Nocedal 449
qp.cost.push_back(HessianFactor(X(1), X(2), 2.0 * I_1x1, -I_1x1, 3.0 * I_1x1,
2.0 * I_1x1, Z_1x1, 10.0));
// Inequality constraints
qp.inequalities.add(X(1), I_1x1, X(2), I_1x1, 2,
0); // x1 + x2 <= 2 --> x1 + x2 -2 <= 0, --> b=2
qp.inequalities.add(X(1), -I_1x1, 0, 1); // -x1 <= 0
qp.inequalities.add(X(2), -I_1x1, 0, 2); // -x2 <= 0
qp.inequalities.add(X(1), I_1x1, 1.5, 3); // x1 <= 3/2
return qp;
}
TEST(QPSolver, TestCase) {
VectorValues values;
double x1 = 5, x2 = 7;
values.insert(X(1), x1 * I_1x1);
values.insert(X(2), x2 * I_1x1);
QP qp = createTestCase();
DOUBLES_EQUAL(29, x1 * x1 - x1 * x2 + x2 * x2 - 3 * x1 + 5, 1e-9);
DOUBLES_EQUAL(29, qp.cost[0]->error(values), 1e-9);
}
TEST(QPSolver, constraintsAux) {
QP qp = createTestCase();
QPSolver solver(qp);
VectorValues lambdas;
lambdas.insert(0, (Vector(1) << -0.5).finished());
lambdas.insert(1, kZero);
lambdas.insert(2, (Vector(1) << 0.3).finished());
lambdas.insert(3, (Vector(1) << 0.1).finished());
int factorIx = solver.identifyLeavingConstraint(qp.inequalities, lambdas);
LONGS_EQUAL(2, factorIx);
VectorValues lambdas2;
lambdas2.insert(0, (Vector(1) << -0.5).finished());
lambdas2.insert(1, kZero);
lambdas2.insert(2, (Vector(1) << -0.3).finished());
lambdas2.insert(3, (Vector(1) << -0.1).finished());
int factorIx2 = solver.identifyLeavingConstraint(qp.inequalities, lambdas2);
LONGS_EQUAL(-1, factorIx2);
}
/* ************************************************************************* */
// Create a simple test graph with one equality constraint
QP createEqualityConstrainedTest() {
QP qp;
// Objective functions x1^2 + x2^2
// Note the Hessian encodes:
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
// Hence, we have G11=2, G12 = 0, g1 = 0, G22 = 2, g2 = 0, f = 0
qp.cost.push_back(HessianFactor(X(1), X(2), 2.0 * I_1x1, Z_1x1, Z_1x1,
2.0 * I_1x1, Z_1x1, 0.0));
// Equality constraints
// x1 + x2 = 1 --> x1 + x2 -1 = 0, hence we negate the b vector
Matrix A1 = I_1x1;
Matrix A2 = I_1x1;
Vector b = -kOne;
qp.equalities.add(X(1), A1, X(2), A2, b, 0);
return qp;
}
TEST(QPSolver, dual) {
QP qp = createEqualityConstrainedTest();
// Initials values
VectorValues initialValues;
initialValues.insert(X(1), I_1x1);
initialValues.insert(X(2), I_1x1);
QPSolver solver(qp);
auto dualGraph = solver.buildDualGraph(qp.inequalities, initialValues);
VectorValues dual = dualGraph.optimize();
VectorValues expectedDual;
expectedDual.insert(0, (Vector(1) << 2.0).finished());
CHECK(assert_equal(expectedDual, dual, 1e-10));
}
/* ************************************************************************* */
TEST(QPSolver, indentifyActiveConstraints) {
QP qp = createTestCase();
QPSolver solver(qp);
VectorValues currentSolution;
currentSolution.insert(X(1), Z_1x1);
currentSolution.insert(X(2), Z_1x1);
auto workingSet =
solver.identifyActiveConstraints(qp.inequalities, currentSolution);
CHECK(!workingSet.at(0)->active()); // inactive
CHECK(workingSet.at(1)->active()); // active
CHECK(workingSet.at(2)->active()); // active
CHECK(!workingSet.at(3)->active()); // inactive
VectorValues solution = solver.buildWorkingGraph(workingSet).optimize();
VectorValues expected;
expected.insert(X(1), kZero);
expected.insert(X(2), kZero);
CHECK(assert_equal(expected, solution, 1e-100));
}
/* ************************************************************************* */
TEST(QPSolver, iterate) {
QP qp = createTestCase();
QPSolver solver(qp);
VectorValues currentSolution;
currentSolution.insert(X(1), Z_1x1);
currentSolution.insert(X(2), Z_1x1);
std::vector<VectorValues> expected(4), expectedDuals(4);
expected[0].insert(X(1), kZero);
expected[0].insert(X(2), kZero);
expectedDuals[0].insert(1, (Vector(1) << 3).finished());
expectedDuals[0].insert(2, kZero);
expected[1].insert(X(1), (Vector(1) << 1.5).finished());
expected[1].insert(X(2), kZero);
expectedDuals[1].insert(3, (Vector(1) << 1.5).finished());
expected[2].insert(X(1), (Vector(1) << 1.5).finished());
expected[2].insert(X(2), (Vector(1) << 0.75).finished());
expected[3].insert(X(1), (Vector(1) << 1.5).finished());
expected[3].insert(X(2), (Vector(1) << 0.5).finished());
auto workingSet =
solver.identifyActiveConstraints(qp.inequalities, currentSolution);
QPSolver::State state(currentSolution, VectorValues(), workingSet, false,
100);
// int it = 0;
while (!state.converged) {
state = solver.iterate(state);
// These checks will fail because the expected solutions obtained from
// Forst10book do not follow exactly what we implemented from Nocedal06book.
// Specifically, we do not re-identify active constraints and
// do not recompute dual variables after every step!!!
// CHECK(assert_equal(expected[it], state.values, 1e-10));
// CHECK(assert_equal(expectedDuals[it], state.duals, 1e-10));
// it++;
}
CHECK(assert_equal(expected[3], state.values, 1e-10));
}
/* ************************************************************************* */
TEST(QPSolver, optimizeForst10book_pg171Ex5) {
QP qp = createTestCase();
QPSolver solver(qp);
VectorValues initialValues;
initialValues.insert(X(1), Z_1x1);
initialValues.insert(X(2), Z_1x1);
VectorValues solution = solver.optimize(initialValues).first;
VectorValues expected;
expected.insert(X(1), (Vector(1) << 1.5).finished());
expected.insert(X(2), (Vector(1) << 0.5).finished());
CHECK(assert_equal(expected, solution, 1e-100));
}
pair<QP, QP> testParser(QPSParser parser) {
QP exampleqp = parser.Parse();
QP expected;
Key X1(Symbol('X', 1)), X2(Symbol('X', 2));
// min f(x,y) = 4 + 1.5x -y + 0.58x^2 + 2xy + 2yx + 10y^2
expected.cost.push_back(HessianFactor(X1, X2, 8.0 * I_1x1, 2.0 * I_1x1,
-1.5 * kOne, 10.0 * I_1x1, 2.0 * kOne,
8.0));
expected.inequalities.add(X1, -2.0 * I_1x1, X2, -I_1x1, -2, 0); // 2x + y >= 2
expected.inequalities.add(X1, -I_1x1, X2, 2.0 * I_1x1, 6, 1); // -x + 2y <= 6
expected.inequalities.add(X1, I_1x1, 20, 4); // x<= 20
expected.inequalities.add(X1, -I_1x1, 0, 2); // x >= 0
expected.inequalities.add(X2, -I_1x1, 0, 3); // y > = 0
return {expected, exampleqp};
}
TEST(QPSolver, ParserSyntaticTest) {
auto result = testParser(QPSParser("QPExample.QPS"));
CHECK(assert_equal(result.first.cost, result.second.cost, 1e-7));
CHECK(assert_equal(result.first.inequalities, result.second.inequalities,
1e-7));
CHECK(assert_equal(result.first.equalities, result.second.equalities, 1e-7));
}
TEST(QPSolver, ParserSemanticTest) {
auto result = testParser(QPSParser("QPExample.QPS"));
VectorValues expected = QPSolver(result.first).optimize().first;
VectorValues actual = QPSolver(result.second).optimize().first;
CHECK(assert_equal(actual, expected, 1e-7));
}
TEST(QPSolver, QPExampleTest) {
QP problem = QPSParser("QPExample.QPS").Parse();
auto solver = QPSolver(problem);
VectorValues actual = solver.optimize().first;
VectorValues expected;
expected.insert(Symbol('X', 1), 0.7625 * I_1x1);
expected.insert(Symbol('X', 2), 0.4750 * I_1x1);
double error_expected = problem.cost.error(expected);
double error_actual = problem.cost.error(actual);
CHECK(assert_equal(expected, actual, 1e-7))
CHECK(assert_equal(error_expected, error_actual))
}
TEST(QPSolver, HS21) {
QP problem = QPSParser("HS21.QPS").Parse();
VectorValues expected;
expected.insert(Symbol('X', 1), 2.0 * I_1x1);
expected.insert(Symbol('X', 2), 0.0 * I_1x1);
VectorValues actual = QPSolver(problem).optimize().first;
double error_actual = problem.cost.error(actual);
CHECK(assert_equal(-99.9599999, error_actual, 1e-7))
CHECK(assert_equal(expected, actual))
}
TEST(QPSolver, HS35) {
QP problem = QPSParser("HS35.QPS").Parse();
VectorValues actual = QPSolver(problem).optimize().first;
double error_actual = problem.cost.error(actual);
CHECK(assert_equal(1.11111111e-01, error_actual, 1e-7))
}
TEST(QPSolver, HS35MOD) {
QP problem = QPSParser("HS35MOD.QPS").Parse();
VectorValues actual = QPSolver(problem).optimize().first;
double error_actual = problem.cost.error(actual);
CHECK(assert_equal(2.50000001e-01, error_actual, 1e-7))
}
TEST(QPSolver, HS51) {
QP problem = QPSParser("HS51.QPS").Parse();
VectorValues actual = QPSolver(problem).optimize().first;
double error_actual = problem.cost.error(actual);
CHECK(assert_equal(8.88178420e-16, error_actual, 1e-7))
}
TEST(QPSolver, HS52) {
QP problem = QPSParser("HS52.QPS").Parse();
VectorValues actual = QPSolver(problem).optimize().first;
double error_actual = problem.cost.error(actual);
CHECK(assert_equal(5.32664756, error_actual, 1e-7))
}
TEST(QPSolver, HS268) { // This test needs an extra order of magnitude of
// tolerance than the rest
QP problem = QPSParser("HS268.QPS").Parse();
VectorValues actual = QPSolver(problem).optimize().first;
double error_actual = problem.cost.error(actual);
CHECK(assert_equal(5.73107049e-07, error_actual, 1e-6))
}
TEST(QPSolver, QPTEST) { // REQUIRES Jacobian Fix
QP problem = QPSParser("QPTEST.QPS").Parse();
VectorValues actual = QPSolver(problem).optimize().first;
double error_actual = problem.cost.error(actual);
CHECK(assert_equal(0.437187500e01, error_actual, 1e-7))
}
/* ************************************************************************* */
// Create Matlab's test graph as in
// http://www.mathworks.com/help/optim/ug/quadprog.html
QP createTestMatlabQPEx() {
QP qp;
// Objective functions 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 -6*x2
// Note the Hessian encodes:
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 +
// 0.5*f
// Hence, we have G11=1, G12 = -1, g1 = +2, G22 = 2, g2 = +6, f = 0
qp.cost.push_back(HessianFactor(X(1), X(2), 1.0 * I_1x1, -I_1x1, 2.0 * I_1x1,
2.0 * I_1x1, 6 * I_1x1, 1000.0));
// Inequality constraints
qp.inequalities.add(X(1), I_1x1, X(2), I_1x1, 2, 0); // x1 + x2 <= 2
qp.inequalities.add(X(1), -I_1x1, X(2), 2 * I_1x1, 2, 1); //-x1 + 2*x2 <=2
qp.inequalities.add(X(1), 2 * I_1x1, X(2), I_1x1, 3, 2); // 2*x1 + x2 <=3
qp.inequalities.add(X(1), -I_1x1, 0, 3); // -x1 <= 0
qp.inequalities.add(X(2), -I_1x1, 0, 4); // -x2 <= 0
return qp;
}
///* *************************************************************************
///*/
TEST(QPSolver, optimizeMatlabEx) {
QP qp = createTestMatlabQPEx();
QPSolver solver(qp);
VectorValues initialValues;
initialValues.insert(X(1), Z_1x1);
initialValues.insert(X(2), Z_1x1);
VectorValues solution = solver.optimize(initialValues).first;
VectorValues expected;
expected.insert(X(1), (Vector(1) << 2.0 / 3.0).finished());
expected.insert(X(2), (Vector(1) << 4.0 / 3.0).finished());
CHECK(assert_equal(expected, solution, 1e-7));
}
///* *************************************************************************
///*/
TEST(QPSolver, optimizeMatlabExNoinitials) {
QP qp = createTestMatlabQPEx();
QPSolver solver(qp);
VectorValues solution = solver.optimize().first;
VectorValues expected;
expected.insert(X(1), (Vector(1) << 2.0 / 3.0).finished());
expected.insert(X(2), (Vector(1) << 4.0 / 3.0).finished());
CHECK(assert_equal(expected, solution, 1e-7));
}
/* ************************************************************************* */
// Create test graph as in Nocedal06book, Ex 16.4, pg. 475
QP createTestNocedal06bookEx16_4() {
QP qp;
qp.cost.add(X(1), I_1x1, I_1x1);
qp.cost.add(X(2), I_1x1, 2.5 * I_1x1);
// Inequality constraints
qp.inequalities.add(X(1), -I_1x1, X(2), 2 * I_1x1, 2, 0);
qp.inequalities.add(X(1), I_1x1, X(2), 2 * I_1x1, 6, 1);
qp.inequalities.add(X(1), I_1x1, X(2), -2 * I_1x1, 2, 2);
qp.inequalities.add(X(1), -I_1x1, 0.0, 3);
qp.inequalities.add(X(2), -I_1x1, 0.0, 4);
return qp;
}
TEST(QPSolver, optimizeNocedal06bookEx16_4) {
QP qp = createTestNocedal06bookEx16_4();
QPSolver solver(qp);
VectorValues initialValues;
initialValues.insert(X(1), (Vector(1) << 2.0).finished());
initialValues.insert(X(2), Z_1x1);
VectorValues solution = solver.optimize(initialValues).first;
VectorValues expected;
expected.insert(X(1), (Vector(1) << 1.4).finished());
expected.insert(X(2), (Vector(1) << 1.7).finished());
CHECK(assert_equal(expected, solution, 1e-7));
}
/* ************************************************************************* */
TEST(QPSolver, failedSubproblem) {
QP qp;
qp.cost.add(X(1), I_2x2, Z_2x1);
qp.cost.push_back(HessianFactor(X(1), Z_2x2, Z_2x1, 100.0));
qp.inequalities.add(X(1), (Matrix(1, 2) << -1.0, 0.0).finished(), -1.0, 0);
VectorValues expected;
expected.insert(X(1), (Vector(2) << 1.0, 0.0).finished());
VectorValues initialValues;
initialValues.insert(X(1), (Vector(2) << 10.0, 100.0).finished());
QPSolver solver(qp);
VectorValues solution = solver.optimize(initialValues).first;
CHECK(assert_equal(expected, solution, 1e-7));
}
/* ************************************************************************* */
TEST(QPSolver, infeasibleInitial) {
QP qp;
qp.cost.add(X(1), I_2x2, Vector::Zero(2));
qp.cost.push_back(HessianFactor(X(1), Z_2x2, Vector::Zero(2), 100.0));
qp.inequalities.add(X(1), (Matrix(1, 2) << -1.0, 0.0).finished(), -1.0, 0);
VectorValues expected;
expected.insert(X(1), (Vector(2) << 1.0, 0.0).finished());
VectorValues initialValues;
initialValues.insert(X(1), (Vector(2) << -10.0, 100.0).finished());
QPSolver solver(qp);
VectorValues solution;
CHECK_EXCEPTION(solver.optimize(initialValues), InfeasibleInitialValues);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */