158 lines
5.6 KiB
C++
158 lines
5.6 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file ConcurrentCalibration.cpp
|
|
* @brief First step towards estimating monocular calibration in concurrent
|
|
* filter/smoother framework. To start with, just batch LM.
|
|
* @date June 11, 2014
|
|
* @author Chris Beall
|
|
*/
|
|
|
|
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
#include <gtsam/nonlinear/utilities.h>
|
|
#include <gtsam/nonlinear/NonlinearEquality.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/slam/ProjectionFactor.h>
|
|
#include <gtsam/slam/GeneralSFMFactor.h>
|
|
#include <gtsam/slam/dataset.h>
|
|
|
|
#include <string>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using symbol_shorthand::K;
|
|
using symbol_shorthand::L;
|
|
using symbol_shorthand::X;
|
|
|
|
int main(int argc, char** argv){
|
|
|
|
Values initial_estimate;
|
|
NonlinearFactorGraph graph;
|
|
const auto model = noiseModel::Isotropic::Sigma(2,1);
|
|
|
|
string calibration_loc = findExampleDataFile("VO_calibration00s.txt");
|
|
string pose_loc = findExampleDataFile("VO_camera_poses00s.txt");
|
|
string factor_loc = findExampleDataFile("VO_stereo_factors00s.txt");
|
|
|
|
//read camera calibration info from file
|
|
// focal lengths fx, fy, skew s, principal point u0, v0, baseline b
|
|
double fx, fy, s, u0, v0, b;
|
|
ifstream calibration_file(calibration_loc.c_str());
|
|
cout << "Reading calibration info" << endl;
|
|
calibration_file >> fx >> fy >> s >> u0 >> v0 >> b;
|
|
|
|
//create stereo camera calibration object
|
|
const Cal3_S2 true_K(fx,fy,s,u0,v0);
|
|
const Cal3_S2 noisy_K(fx*1.2,fy*1.2,s,u0-10,v0+10);
|
|
|
|
initial_estimate.insert(K(0), noisy_K);
|
|
|
|
auto calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 1e-5, 100, 100).finished());
|
|
graph.addPrior(K(0), noisy_K, calNoise);
|
|
|
|
|
|
ifstream pose_file(pose_loc.c_str());
|
|
cout << "Reading camera poses" << endl;
|
|
int pose_id;
|
|
MatrixRowMajor m(4,4);
|
|
//read camera pose parameters and use to make initial estimates of camera poses
|
|
while (pose_file >> pose_id) {
|
|
for (int i = 0; i < 16; i++) {
|
|
pose_file >> m.data()[i];
|
|
}
|
|
initial_estimate.insert(Symbol('x', pose_id), Pose3(m));
|
|
}
|
|
|
|
auto poseNoise = noiseModel::Isotropic::Sigma(6, 0.01);
|
|
graph.addPrior(Symbol('x', pose_id), Pose3(m), poseNoise);
|
|
|
|
// camera and landmark keys
|
|
size_t x, l;
|
|
|
|
// pixel coordinates uL, uR, v (same for left/right images due to rectification)
|
|
// landmark coordinates X, Y, Z in camera frame, resulting from triangulation
|
|
double uL, uR, v, _X, Y, Z;
|
|
ifstream factor_file(factor_loc.c_str());
|
|
cout << "Reading stereo factors" << endl;
|
|
//read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation
|
|
while (factor_file >> x >> l >> uL >> uR >> v >> _X >> Y >> Z) {
|
|
// graph.emplace_shared<GenericStereoFactor<Pose3, Point3> >(StereoPoint2(uL, uR, v), model, X(x), L(l), K);
|
|
|
|
graph.emplace_shared<GeneralSFMFactor2<Cal3_S2> >(Point2(uL,v), model, X(x), L(l), K(0));
|
|
|
|
|
|
//if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
|
|
if (!initial_estimate.exists(L(l))) {
|
|
Pose3 camPose = initial_estimate.at<Pose3>(X(x));
|
|
//transformFrom() transforms the input Point3 from the camera pose space, camPose, to the global space
|
|
Point3 worldPoint = camPose.transformFrom(Point3(_X, Y, Z));
|
|
initial_estimate.insert(L(l), worldPoint);
|
|
}
|
|
}
|
|
|
|
Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1));
|
|
//constrain the first pose such that it cannot change from its original value during optimization
|
|
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
|
|
// QR is much slower than Cholesky, but numerically more stable
|
|
graph.emplace_shared<NonlinearEquality<Pose3> >(Symbol('x',1),first_pose);
|
|
|
|
cout << "Optimizing" << endl;
|
|
LevenbergMarquardtParams params;
|
|
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
|
params.verbosity = NonlinearOptimizerParams::ERROR;
|
|
|
|
//create Levenberg-Marquardt optimizer to optimize the factor graph
|
|
LevenbergMarquardtOptimizer optimizer(graph, initial_estimate,params);
|
|
// Values result = optimizer.optimize();
|
|
|
|
string K_values_file = "K_values.txt";
|
|
ofstream stream_K(K_values_file.c_str());
|
|
|
|
double currentError;
|
|
|
|
|
|
stream_K << optimizer.iterations() << " " << optimizer.values().at<Cal3_S2>(K(0)).vector().transpose() << endl;
|
|
|
|
|
|
// Iterative loop
|
|
do {
|
|
// Do next iteration
|
|
currentError = optimizer.error();
|
|
optimizer.iterate();
|
|
|
|
stream_K << optimizer.iterations() << " " << optimizer.values().at<Cal3_S2>(K(0)).vector().transpose() << endl;
|
|
|
|
if(params.verbosity >= NonlinearOptimizerParams::ERROR) cout << "newError: " << optimizer.error() << endl;
|
|
} while(optimizer.iterations() < params.maxIterations &&
|
|
!checkConvergence(params.relativeErrorTol, params.absoluteErrorTol,
|
|
params.errorTol, currentError, optimizer.error(), params.verbosity));
|
|
|
|
Values result = optimizer.values();
|
|
|
|
cout << "Final result sample:" << endl;
|
|
Values pose_values = utilities::allPose3s(result);
|
|
pose_values.print("Final camera poses:\n");
|
|
|
|
result.at<Cal3_S2>(K(0)).print("Final K\n");
|
|
|
|
noisy_K.print("Initial noisy K\n");
|
|
true_K.print("Initial correct K\n");
|
|
|
|
return 0;
|
|
}
|