gtsam/gtsam_unstable/base/DSF.h

213 lines
5.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DSF.h
* @date Mar 26, 2010
* @author Kai Ni
* @brief An implementation of Disjoint set forests (see CLR page 446 and up)
*/
#pragma once
#include <gtsam_unstable/base/BTree.h>
#include <iostream>
#include <list>
#include <set>
#include <map>
namespace gtsam {
/**
* Disjoint Set Forest class
*
* Quoting from CLR: A disjoint-set data structure maintains a collection
* S = {S_1,S_2,...} of disjoint dynamic sets. Each set is identified by
* a representative, which is some member of the set.
*
* @ingroup base
*/
template<class KEY>
class DSF: protected BTree<KEY, KEY> {
public:
typedef DSF<KEY> Self;
typedef std::set<KEY> Set;
typedef BTree<KEY, KEY> Tree;
typedef std::pair<KEY, KEY> KeyLabel;
// constructor
DSF() :
Tree() {
}
// constructor
DSF(const Tree& tree) :
Tree(tree) {
}
// constructor with a list of unconnected keys
DSF(const std::list<KEY>& keys) :
Tree() {
for(const KEY& key: keys)
*this = this->add(key, key);
}
// constructor with a set of unconnected keys
DSF(const std::set<KEY>& keys) :
Tree() {
for(const KEY& key: keys)
*this = this->add(key, key);
}
// create a new singleton, does nothing if already exists
Self makeSet(const KEY& key) const {
if (this->mem(key))
return *this;
else
return this->add(key, key);
}
// create a new singleton, does nothing if already exists
void makeSetInPlace(const KEY& key) {
if (!this->mem(key))
*this = this->add(key, key);
}
// find the label of the set in which {key} lives
KEY findSet(const KEY& key) const {
KEY parent = this->find(key);
return parent == key ? key : findSet(parent);
}
// return a new DSF where x and y are in the same set. No path compression
Self makeUnion(const KEY& key1, const KEY& key2) const {
DSF<KEY> copy = *this;
copy.makeUnionInPlace(key1,key2);
return copy;
}
// the in-place version of makeUnion
void makeUnionInPlace(const KEY& key1, const KEY& key2) {
*this = this->add(findSet_(key2), findSet_(key1));
}
// create a new singleton with two connected keys
Self makePair(const KEY& key1, const KEY& key2) const {
return makeSet(key1).makeSet(key2).makeUnion(key1, key2);
}
// create a new singleton with a list of fully connected keys
Self makeList(const std::list<KEY>& keys) const {
Self t = *this;
for(const KEY& key: keys)
t = t.makePair(key, keys.front());
return t;
}
// return a dsf in which all find_set operations will be O(1) due to path compression.
DSF flatten() const {
DSF t = *this;
for(const KeyLabel& pair: (Tree)t)
t.findSet_(pair.first);
return t;
}
// maps f over all keys, must be invertible
DSF map(std::function<KEY(const KEY&)> func) const {
DSF t;
for(const KeyLabel& pair: (Tree)*this)
t = t.add(func(pair.first), func(pair.second));
return t;
}
// return the number of sets
size_t numSets() const {
size_t num = 0;
for(const KeyLabel& pair: (Tree)*this)
if (pair.first == pair.second)
num++;
return num;
}
// return the numer of keys
size_t size() const {
return Tree::size();
}
// return all sets, i.e. a partition of all elements
std::map<KEY, Set> sets() const {
std::map<KEY, Set> sets;
for(const KeyLabel& pair: (Tree)*this)
sets[findSet(pair.second)].insert(pair.first);
return sets;
}
// return a partition of the given elements {keys}
std::map<KEY, Set> partition(const std::list<KEY>& keys) const {
std::map<KEY, Set> partitions;
for(const KEY& key: keys)
partitions[findSet(key)].insert(key);
return partitions;
}
// get the nodes in the tree with the given label
Set set(const KEY& label) const {
Set set;
for(const KeyLabel& pair: (Tree)*this) {
if (pair.second == label || findSet(pair.second) == label)
set.insert(pair.first);
}
return set;
}
/** equality */
bool operator==(const Self& t) const {
return (Tree) *this == (Tree) t;
}
/** inequality */
bool operator!=(const Self& t) const {
return (Tree) *this != (Tree) t;
}
// print the object
void print(const std::string& name = "DSF") const {
std::cout << name << std::endl;
for(const KeyLabel& pair: (Tree)*this)
std::cout << (std::string) pair.first << " " << (std::string) pair.second
<< std::endl;
}
protected:
/**
* same as findSet except with path compression: After we have traversed the path to
* the root, each parent pointer is made to directly point to it
*/
KEY findSet_(const KEY& key) {
KEY parent = this->find(key);
if (parent == key)
return parent;
else {
KEY label = findSet_(parent);
*this = this->add(key, label);
return label;
}
}
};
// shortcuts
typedef DSF<int> DSFInt;
} // namespace gtsam