gtsam/gtsam_unstable/base/BTree.h

418 lines
12 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file BTree.h
* @brief purely functional binary tree
* @author Chris Beall
* @author Frank Dellaert
* @date Feb 3, 2010
*/
#pragma once
#include <stack>
#include <sstream>
#include <memory>
#include <functional>
namespace gtsam {
/**
* @brief Binary tree
* @ingroup base
*/
template<class KEY, class VALUE>
class BTree {
public:
typedef std::pair<KEY, VALUE> value_type;
private:
/**
* Node in a tree
*/
struct Node {
const size_t height_;
const value_type keyValue_;
const BTree left, right;
/** default constructor */
Node() {
}
/**
* Create leaf node with height 1
* @param keyValue (key,value) pair
*/
Node(const value_type& keyValue) :
height_(1), keyValue_(keyValue) {
}
/**
* Create a node from two subtrees and a key value pair
*/
Node(const BTree& l, const value_type& keyValue, const BTree& r) :
height_(l.height() >= r.height() ? l.height() + 1 : r.height() + 1),
keyValue_(keyValue), left(l), right(r) {
}
inline const KEY& key() const { return keyValue_.first;}
inline const VALUE& value() const { return keyValue_.second;}
}; // Node
// We store a shared pointer to the root of the functional tree
// composed of Node classes. If root_==nullptr, the tree is empty.
typedef std::shared_ptr<const Node> sharedNode;
sharedNode root_;
inline const value_type& keyValue() const { return root_->keyValue_;}
inline const KEY& key() const { return root_->key(); }
inline const VALUE& value() const { return root_->value(); }
inline const BTree& left() const { return root_->left; }
inline const BTree& right() const { return root_->right; }
/** create a new balanced tree out of two trees and a key-value pair */
static BTree balance(const BTree& l, const value_type& xd, const BTree& r) {
size_t hl = l.height(), hr = r.height();
if (hl > hr + 2) {
const BTree& ll = l.left(), lr = l.right();
if (ll.height() >= lr.height())
return BTree(ll, l.keyValue(), BTree(lr, xd, r));
else {
BTree _left(ll, l.keyValue(), lr.left());
BTree _right(lr.right(), xd, r);
return BTree(_left, lr.keyValue(), _right);
}
} else if (hr > hl + 2) {
const BTree& rl = r.left(), rr = r.right();
if (rr.height() >= rl.height())
return BTree(BTree(l, xd, rl), r.keyValue(), rr);
else {
BTree _left(l, xd, rl.left());
BTree _right(rl.right(), r.keyValue(), rr);
return BTree(_left, rl.keyValue(), _right);
}
} else
return BTree(l, xd, r);
}
public:
/** default constructor creates an empty tree */
BTree() {
}
/** copy constructor */
BTree(const BTree& other) :
root_(other.root_) {
}
/** create leaf from key-value pair */
BTree(const value_type& keyValue) :
root_(new Node(keyValue)) {
}
/** create from key-value pair and left, right subtrees */
BTree(const BTree& l, const value_type& keyValue, const BTree& r) :
root_(new Node(l, keyValue, r)) {
}
/** assignment operator */
BTree & operator= (const BTree & other) {
root_ = other.root_;
return *this;
}
/** Check whether tree is empty */
bool empty() const {
return !root_;
}
/** add a key-value pair */
BTree add(const value_type& xd) const {
if (empty()) return BTree(xd);
const KEY& x = xd.first;
if (x == key())
return BTree(left(), xd, right());
else if (x < key())
return balance(left().add(xd), keyValue(), right());
else
return balance(left(), keyValue(), right().add(xd));
}
/** add a key-value pair */
BTree add(const KEY& x, const VALUE& d) const {
return add(std::make_pair(x, d));
}
/** member predicate */
bool mem(const KEY& x) const {
if (!root_) return false;
if (x == key()) return true;
if (x < key())
return left().mem(x);
else
return right().mem(x);
}
/** Check whether trees are *exactly* the same (occupy same memory) */
inline bool same(const BTree& other) const {
return (other.root_ == root_);
}
/**
* Check whether trees are structurally the same,
* i.e., contain the same values in same tree-structure.
*/
bool operator==(const BTree& other) const {
if (other.root_ == root_) return true; // if same, we're done
if (empty() && !other.empty()) return false;
if (!empty() && other.empty()) return false;
// both non-empty, recurse: check this key-value pair and subtrees...
return (keyValue() == other.keyValue()) && (left() == other.left())
&& (right() == other.right());
}
inline bool operator!=(const BTree& other) const {
return !operator==(other);
}
/** minimum key binding */
const value_type& min() const {
if (!root_) throw std::invalid_argument("BTree::min: empty tree");
if (left().empty()) return keyValue();
return left().min();
}
/** remove minimum key binding */
BTree remove_min() const {
if (!root_) throw std::invalid_argument("BTree::remove_min: empty tree");
if (left().empty()) return right();
return balance(left().remove_min(), keyValue(), right());
}
/** merge two trees */
static BTree merge(const BTree& t1, const BTree& t2) {
if (t1.empty()) return t2;
if (t2.empty()) return t1;
const value_type& xd = t2.min();
return balance(t1, xd, t2.remove_min());
}
/** remove a key-value pair */
BTree remove(const KEY& x) const {
if (!root_) return BTree();
if (x == key())
return merge(left(), right());
else if (x < key())
return balance(left().remove(x), keyValue(), right());
else
return balance(left(), keyValue(), right().remove(x));
}
/** Return height of the tree, 0 if empty */
size_t height() const {
return (root_ != nullptr) ? root_->height_ : 0;
}
/** return size of the tree */
size_t size() const {
if (!root_) return 0;
return left().size() + 1 + right().size();
}
/**
* find a value given a key, throws exception when not found
* Optimized non-recursive version as [find] is crucial for speed
*/
const VALUE& find(const KEY& k) const {
const Node* node = root_.get();
while (node) {
const KEY& key = node->key();
if (k < key) node = node->left.root_.get();
else if (key < k) node = node->right.root_.get();
else return node->value();
}
throw std::invalid_argument("BTree::find: key not found");
}
/** print in-order */
void print(const std::string& s = "") const {
if (empty()) return;
KEY k = key();
std::stringstream ss;
ss << height();
k.print(s + ss.str() + " ");
left().print(s + "L ");
right().print(s + "R ");
}
/** iterate over tree */
void iter(std::function<void(const KEY&, const VALUE&)> f) const {
if (!root_) return;
left().iter(f);
f(key(), value());
right().iter(f);
}
/** map key-values in tree over function f that computes a new value */
template<class TO>
BTree<KEY, TO> map(std::function<TO(const KEY&, const VALUE&)> f) const {
if (empty()) return BTree<KEY, TO> ();
std::pair<KEY, TO> xd(key(), f(key(), value()));
return BTree<KEY, TO> (left().map(f), xd, right().map(f));
}
/**
* t.fold(f,a) computes [(f kN dN ... (f k1 d1 a)...)],
* where [k1 ... kN] are the keys of all bindings in [m],
* and [d1 ... dN] are the associated data.
* The associated values are passed to [f] in reverse sort order
*/
template<class ACC>
ACC fold(std::function<ACC(const KEY&, const VALUE&, const ACC&)> f,
const ACC& a) const {
if (!root_) return a;
ACC ar = right().fold(f, a); // fold over right subtree
ACC am = f(key(), value(), ar); // apply f with current value
return left().fold(f, am); // fold over left subtree
}
/**
* @brief Const iterator
* Not trivial: iterator keeps a stack to indicate current path from root_
*/
class const_iterator {
private:
typedef const_iterator Self;
typedef std::pair<sharedNode, bool> flagged;
/** path to the iterator, annotated with flag */
std::stack<flagged> path_;
const sharedNode& current() const {
return path_.top().first;
}
bool done() const {
return path_.top().second;
}
// The idea is we already iterated through the left-subtree and current key-value.
// We now try pushing left subtree of right onto the stack. If there is no right
// sub-tree, we pop this node of the stack and the parent becomes the iterator.
// We avoid going down a right-subtree that was already visited by checking the flag.
void increment() {
if (path_.empty()) return;
sharedNode t = current()->right.root_;
if (!t || done()) {
// no right subtree, iterator becomes first parent with a non-visited right subtree
path_.pop();
while (!path_.empty() && done())
path_.pop();
} else {
path_.top().second = true; // flag we visited right
// push right root and its left-most path onto the stack
while (t) {
path_.push(std::make_pair(t, false));
t = t->left.root_;
}
}
}
public:
// traits for playing nice with STL
typedef ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
typedef std::pair<KEY, VALUE> value_type;
typedef const value_type* pointer;
typedef const value_type& reference;
/** initialize end */
const_iterator() {
}
/** initialize from root */
const_iterator(const sharedNode& root) {
sharedNode t = root;
while (t) {
path_.push(std::make_pair(t, false));
t = t->left.root_;
}
}
/** equality */
bool operator==(const Self& __x) const {
return path_ == __x.path_;
}
/** inequality */
bool operator!=(const Self& __x) const {
return path_ != __x.path_;
}
/** dereference */
reference operator*() const {
if (path_.empty()) throw std::invalid_argument(
"operator*: tried to dereference end");
return current()->keyValue_;
}
/** dereference */
pointer operator->() const {
if (path_.empty()) throw std::invalid_argument(
"operator->: tried to dereference end");
return &(current()->keyValue_);
}
/** pre-increment */
Self& operator++() {
increment();
return *this;
}
/** post-increment */
Self operator++(int) {
Self __tmp = *this;
increment();
return __tmp;
}
}; // const_iterator
// to make BTree work with range-based for
// We do *not* want a non-const iterator
typedef const_iterator iterator;
/** return iterator */
const_iterator begin() const {
return const_iterator(root_);
}
/** return iterator */
const_iterator end() const {
return const_iterator();
}
}; // BTree
} // namespace gtsam