/* * Rot2.h * * Created on: Dec 9, 2009 * Author: Frank Dellaert */ #ifndef ROT2_H_ #define ROT2_H_ #include #include "Testable.h" #include "Point2.h" #include "Matrix.h" #include "Lie.h" namespace gtsam { /** Rotation matrix * NOTE: the angle theta is in radians unless explicitly stated */ class Rot2: Testable, public Lie { private: /** we store cos(theta) and sin(theta) */ double c_, s_; /** private constructor from cos/sin */ inline Rot2(double c, double s) : c_(c), s_(s) {} /** normalize to make sure cos and sin form unit vector */ Rot2& normalize(); public: /** default constructor, zero rotation */ Rot2() : c_(1.0), s_(0.0) {} /** "named constructors" */ /** Named constructor from angle == exponential map at identity - theta is in radians*/ static Rot2 fromAngle(double theta); /** Named constructor from angle in degrees */ static Rot2 fromDegrees(double theta) { const double degree = M_PI / 180; return fromAngle(theta * degree); } /** Named constructor from cos(theta),sin(theta) pair, will *not* normalize! */ static Rot2 fromCosSin(double c, double s); /** Named constructor that behaves as atan2, i.e., y,x order (!) and normalizes */ static Rot2 atan2(double y, double x); /** return angle */ double theta() const { return ::atan2(s_,c_); } /** return cos */ inline double c() const { return c_; } /** return sin */ inline double s() const { return s_; } /** print */ void print(const std::string& s = "theta") const; /** equals with an tolerance */ bool equals(const Rot2& R, double tol = 1e-9) const; /** return 2*2 rotation matrix */ Matrix matrix() const; /** return 2*2 transpose (inverse) rotation matrix */ Matrix transpose() const; /** The inverse rotation - negative angle */ Rot2 inverse() const { return Rot2(c_, -s_);} /** Compose - make a new rotation by adding angles */ Rot2 operator*(const Rot2& R) const { return fromCosSin(c_ * R.c_ - s_ * R.s_, s_ * R.c_ + c_ * R.s_); } /** rotate from world to rotated = R*p */ Point2 rotate(const Point2& p) const; /** rotate from world to rotated = R'*p */ Point2 unrotate(const Point2& p) const; /** get the dimension by the type */ static inline size_t dim() { return 1; }; private: /** Serialization function */ friend class boost::serialization::access; template void serialize(Archive & ar, const unsigned int version) { ar & BOOST_SERIALIZATION_NVP(c_); ar & BOOST_SERIALIZATION_NVP(s_); } }; // Rot2 /* inline named constructor implementation */ inline Rot2 Rot2::fromAngle(double theta) { return Rot2(cos(theta), sin(theta)); } // Lie group functions /** Global print calls member function */ inline void print(const Rot2& r, const std::string& s = "") { r.print(s); } /** Dimensionality of the tangent space */ inline size_t dim(const Rot2&) { return 1; } /** Expmap around identity - create a rotation from an angle */ template<> inline Rot2 expmap(const Vector& v) { if (zero(v)) return (Rot2()); else return Rot2::fromAngle(v(0)); } /** Logmap around identity - return the angle of the rotation */ inline Vector logmap(const Rot2& r) { return Vector_(1, r.theta()); } /** Compose - make a new rotation by adding angles */ inline Rot2 compose(const Rot2& R1, const Rot2& R2) { return R1*R2;} /** The inverse rotation - negative angle */ inline Rot2 inverse(const Rot2& R) { return R.inverse();} /** * rotate point from rotated coordinate frame to * world = R*p */ inline Point2 operator*(const Rot2& R, const Point2& p) {return R.rotate(p);} Point2 rotate(const Rot2 & R, const Point2& p, boost::optional H1 = boost::none, boost::optional H2 = boost::none); /** * rotate point from world to rotated * frame = R'*p */ Point2 unrotate(const Rot2 & R, const Point2& p, boost::optional H1 = boost::none, boost::optional H2 = boost::none); /** * Calculate relative bearing to a landmark in local coordinate frame * @param point 2D location of landmark * @param H optional reference for Jacobian * @return 2D rotation \in SO(2) */ Rot2 relativeBearing(const Point2& d); /** * Calculate relative bearing and optional derivative */ Rot2 relativeBearing(const Point2& d, boost::optional H); } // gtsam #endif /* ROT2_H_ */