/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file TestSmartProjectionFactor.cpp * @brief Unit tests for ProjectionFactor Class * @author Frank Dellaert * @date Nov 2009 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace boost::assign; using namespace gtsam; // make a realistic calibration matrix static double fov = 60; // degrees static size_t w=640,h=480; static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h)); // Create a noise model for the pixel error static SharedNoiseModel model(noiseModel::Unit::Create(2)); // Convenience for named keys using symbol_shorthand::X; using symbol_shorthand::L; typedef SmartProjectionFactor TestSmartProjectionFactor; /* ************************************************************************* */ TEST( SmartProjectionFactor, Constructor) { Key poseKey(X(1)); std::vector views; views += poseKey; std::vector measurements; measurements.push_back(Point2(323.0, 240.0)); TestSmartProjectionFactor factor(measurements, model, views, K); } /* ************************************************************************* */ TEST( SmartProjectionFactor, ConstructorWithTransform) { Key poseKey(X(1)); std::vector views; views += poseKey; std::vector measurements; measurements.push_back(Point2(323.0, 240.0)); Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); TestSmartProjectionFactor factor(measurements, model, views, K, boost::none, body_P_sensor); } /* ************************************************************************* */ TEST( SmartProjectionFactor, Equals ) { // Create two identical factors and make sure they're equal std::vector measurements; measurements.push_back(Point2(323.0, 240.0)); std::vector views; views += X(1); TestSmartProjectionFactor factor1(measurements, model, views, K); TestSmartProjectionFactor factor2(measurements, model, views, K); CHECK(assert_equal(factor1, factor2)); } /* ************************************************************************* */ TEST( SmartProjectionFactor, EqualsWithTransform ) { // Create two identical factors and make sure they're equal std::vector measurements; measurements.push_back(Point2(323.0, 240.0)); Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); std::vector views; views += X(1); TestSmartProjectionFactor factor1(measurements, model, views, K, boost::none, body_P_sensor); TestSmartProjectionFactor factor2(measurements, model, views, K, boost::none, body_P_sensor); CHECK(assert_equal(factor1, factor2)); } /* ************************************************************************* */ TEST( SmartProjectionFactor, noisy ){ cout << " ************************ SmartProjectionFactor: noisy ****************************" << endl; Symbol x1('X', 1); Symbol x2('X', 2); const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); std::vector views; views += x1, x2; //, x3; Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480)); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); SimpleCamera level_camera(level_pose, *K); // create second camera 1 meter to the right of first camera Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0)); SimpleCamera level_camera_right(level_pose_right, *K); // landmark ~5 meters infront of camera Point3 landmark(5, 0.5, 1.2); // 1. Project two landmarks into two cameras and triangulate Point2 pixelError(0.2,0.2); Point2 level_uv = level_camera.project(landmark) + pixelError; Point2 level_uv_right = level_camera_right.project(landmark); Values values; values.insert(x1, level_pose); Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); values.insert(x2, level_pose_right.compose(noise_pose)); vector measurements; measurements += level_uv, level_uv_right; SmartProjectionFactor::shared_ptr smartFactor(new SmartProjectionFactor(measurements, noiseProjection, views, K)); double actualError = smartFactor->error(values); std::cout << "Error: " << actualError << std::endl; // we do not expect to be able to predict the error, since the error on the pixel will change // the triangulation of the landmark which is internal to the factor. // DOUBLES_EQUAL(expectedError, actualError, 1e-7); } /* ************************************************************************* */ TEST( SmartProjectionFactor, 3poses_1iteration_projection_factor_comparison ){ cout << " ************************ SmartProjectionFactor: 3 cams + 3 landmarks, 1 iteration, comparison b/w Generic and Smart Projection Factors **********************" << endl; Symbol x1('X', 1); Symbol x2('X', 2); Symbol x3('X', 3); const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); std::vector views; views += x1, x2, x3; Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480)); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); SimpleCamera cam1(pose1, *K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); SimpleCamera cam2(pose2, *K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); SimpleCamera cam3(pose3, *K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); vector measurements_cam1, measurements_cam2, measurements_cam3; // 1. Project three landmarks into three cameras and triangulate Point2 cam1_uv1 = cam1.project(landmark1); Point2 cam2_uv1 = cam2.project(landmark1); Point2 cam3_uv1 = cam3.project(landmark1); measurements_cam1 += cam1_uv1, cam2_uv1, cam3_uv1; // Point2 cam1_uv2 = cam1.project(landmark2); Point2 cam2_uv2 = cam2.project(landmark2); Point2 cam3_uv2 = cam3.project(landmark2); measurements_cam2 += cam1_uv2, cam2_uv2, cam3_uv2; Point2 cam1_uv3 = cam1.project(landmark3); Point2 cam2_uv3 = cam2.project(landmark3); Point2 cam3_uv3 = cam3.project(landmark3); measurements_cam3 += cam1_uv3, cam2_uv3, cam3_uv3; typedef SmartProjectionFactor SmartFactor; typedef GenericProjectionFactor ProjectionFactor; SmartFactor::shared_ptr smartFactor1(new SmartFactor(measurements_cam1, noiseProjection, views, K, boost::make_optional(landmark1) )); SmartFactor::shared_ptr smartFactor2(new SmartFactor(measurements_cam2, noiseProjection, views, K, boost::make_optional(landmark2) )); SmartFactor::shared_ptr smartFactor3(new SmartFactor(measurements_cam3, noiseProjection, views, K, boost::make_optional(landmark3) )); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graphWithOriginalFactor; graphWithOriginalFactor.push_back(ProjectionFactor(cam1.project(landmark1), noiseProjection, x1, L(1), K)); graphWithOriginalFactor.push_back(ProjectionFactor(cam2.project(landmark1), noiseProjection, x2, L(1), K)); graphWithOriginalFactor.push_back(ProjectionFactor(cam3.project(landmark1), noiseProjection, x3, L(1), K)); graphWithOriginalFactor.push_back(ProjectionFactor(cam1.project(landmark2), noiseProjection, x1, L(2), K)); graphWithOriginalFactor.push_back(ProjectionFactor(cam2.project(landmark2), noiseProjection, x2, L(2), K)); graphWithOriginalFactor.push_back(ProjectionFactor(cam3.project(landmark2), noiseProjection, x3, L(2), K)); graphWithOriginalFactor.push_back(ProjectionFactor(cam1.project(landmark3), noiseProjection, x1, L(3), K)); graphWithOriginalFactor.push_back(ProjectionFactor(cam2.project(landmark3), noiseProjection, x2, L(3), K)); graphWithOriginalFactor.push_back(ProjectionFactor(cam3.project(landmark3), noiseProjection, x3, L(3), K)); graphWithOriginalFactor.push_back(PriorFactor(x1, pose1, noisePrior)); graphWithOriginalFactor.push_back(PriorFactor(x2, pose2, noisePrior)); Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); Values valuesOriginalFactor; valuesOriginalFactor.insert(x1, pose1); valuesOriginalFactor.insert(x2, pose2); valuesOriginalFactor.insert(x3, pose3* noise_pose); valuesOriginalFactor.insert(L(1), landmark1); valuesOriginalFactor.insert(L(2), landmark2); valuesOriginalFactor.insert(L(3), landmark3); NonlinearFactorGraph graphWithSmartFactor; graphWithSmartFactor.push_back(smartFactor1); graphWithSmartFactor.push_back(smartFactor2); graphWithSmartFactor.push_back(smartFactor3); graphWithSmartFactor.push_back(PriorFactor(x1, pose1, noisePrior)); graphWithSmartFactor.push_back(PriorFactor(x2, pose2, noisePrior)); Values valuesSmartFactor; valuesSmartFactor.insert(x1, pose1); valuesSmartFactor.insert(x2, pose2); // initialize third pose with some noise, we expect it to move back to original pose3 valuesSmartFactor.insert(x3, pose3*noise_pose); valuesSmartFactor.at(x3).print("Pose3 before optimization: "); pose3.print("Pose3 ground truth: "); LevenbergMarquardtParams params; params.maxIterations = 1; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; Values resultWithOriginalFactor; std::cout << "\n=========================================" << std::endl; std::cout << "Optimizing GenericProjectionFactor" << std::endl; LevenbergMarquardtOptimizer optimizerForOriginalFactor(graphWithOriginalFactor, valuesOriginalFactor, params); resultWithOriginalFactor = optimizerForOriginalFactor.optimize(); Values resultWithSmartFactor; std::cout << "\n=========================================" << std::endl; std::cout << "Optimizing SmartProjectionfactor" << std::endl; LevenbergMarquardtOptimizer optimizerForSmartFactor(graphWithSmartFactor, valuesSmartFactor, params); resultWithSmartFactor = optimizerForSmartFactor.optimize(); std::cout << "\n=========================================" << std::endl; // result.print("results of 3 camera, 3 landmark optimization \n"); resultWithOriginalFactor.at(x3).print("Original: Pose3 after optimization: "); resultWithSmartFactor.at(x3).print("\nSmart: Pose3 after optimization: "); EXPECT(assert_equal(resultWithOriginalFactor.at(x3),resultWithSmartFactor.at(x3))); std::cout << "\n================= STARTING GN ITERATION ========================" << std::endl; GaussNewtonParams params2; params2.maxIterations = 1; Values resultWithOriginalFactor2; params2.verbosity = NonlinearOptimizerParams::DELTA; GaussNewtonOptimizer optimizerForOriginalFactor2(graphWithOriginalFactor, valuesOriginalFactor, params2); resultWithOriginalFactor2 = optimizerForOriginalFactor2.optimize(); Values resultWithSmartFactor2; GaussNewtonOptimizer optimizerForSmartFactor2(graphWithSmartFactor, valuesSmartFactor, params2); resultWithSmartFactor2 = optimizerForSmartFactor2.optimize(); std::cout << "\n=========================================" << std::endl; resultWithOriginalFactor2.at(x3).print("Original: Pose3 after optimization (GaussNewton): "); resultWithSmartFactor2.at(x3).print("\nSmart: Pose3 after optimization (GaussNewton): "); } /* ************************************************************************* */ TEST( SmartProjectionFactor, 3poses_smart_projection_factor ){ cout << " ************************ SmartProjectionFactor: 3 cams + 3 landmarks **********************" << endl; Symbol x1('X', 1); Symbol x2('X', 2); Symbol x3('X', 3); const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); std::vector views; views += x1, x2, x3; Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480)); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); SimpleCamera cam1(pose1, *K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); SimpleCamera cam2(pose2, *K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); SimpleCamera cam3(pose3, *K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); vector measurements_cam1, measurements_cam2, measurements_cam3; // 1. Project three landmarks into three cameras and triangulate Point2 cam1_uv1 = cam1.project(landmark1); Point2 cam2_uv1 = cam2.project(landmark1); Point2 cam3_uv1 = cam3.project(landmark1); measurements_cam1 += cam1_uv1, cam2_uv1, cam3_uv1; // Point2 cam1_uv2 = cam1.project(landmark2); Point2 cam2_uv2 = cam2.project(landmark2); Point2 cam3_uv2 = cam3.project(landmark2); measurements_cam2 += cam1_uv2, cam2_uv2, cam3_uv2; Point2 cam1_uv3 = cam1.project(landmark3); Point2 cam2_uv3 = cam2.project(landmark3); Point2 cam3_uv3 = cam3.project(landmark3); measurements_cam3 += cam1_uv3, cam2_uv3, cam3_uv3; typedef SmartProjectionFactor SmartFactor; SmartFactor::shared_ptr smartFactor1(new SmartFactor(measurements_cam1, noiseProjection, views, K)); SmartFactor::shared_ptr smartFactor2(new SmartFactor(measurements_cam2, noiseProjection, views, K)); SmartFactor::shared_ptr smartFactor3(new SmartFactor(measurements_cam3, noiseProjection, views, K)); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.push_back(PriorFactor(x1, pose1, noisePrior)); graph.push_back(PriorFactor(x2, pose2, noisePrior)); // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise Values values; values.insert(x1, pose1); values.insert(x2, pose2); // initialize third pose with some noise, we expect it to move back to original pose3 values.insert(x3, pose3*noise_pose); values.at(x3).print("Smart: Pose3 before optimization: "); LevenbergMarquardtParams params; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; Values result; gttic_(SmartProjectionFactor); LevenbergMarquardtOptimizer optimizer(graph, values, params); result = optimizer.optimize(); gttoc_(SmartProjectionFactor); tictoc_finishedIteration_(); // result.print("results of 3 camera, 3 landmark optimization \n"); result.at(x3).print("Smart: Pose3 after optimization: "); EXPECT(assert_equal(pose3,result.at(x3))); tictoc_print_(); } /* ************************************************************************* */ TEST( SmartProjectionFactor, 3poses_iterative_smart_projection_factor ){ cout << " ************************ SmartProjectionFactor: 3 cams + 3 landmarks **********************" << endl; Symbol x1('X', 1); Symbol x2('X', 2); Symbol x3('X', 3); const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); std::vector views; views += x1, x2, x3; Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480)); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); SimpleCamera cam1(pose1, *K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); SimpleCamera cam2(pose2, *K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); SimpleCamera cam3(pose3, *K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); vector measurements_cam1, measurements_cam2, measurements_cam3; // 1. Project three landmarks into three cameras and triangulate Point2 cam1_uv1 = cam1.project(landmark1); Point2 cam2_uv1 = cam2.project(landmark1); Point2 cam3_uv1 = cam3.project(landmark1); measurements_cam1 += cam1_uv1, cam2_uv1, cam3_uv1; // Point2 cam1_uv2 = cam1.project(landmark2); Point2 cam2_uv2 = cam2.project(landmark2); Point2 cam3_uv2 = cam3.project(landmark2); measurements_cam2 += cam1_uv2, cam2_uv2, cam3_uv2; Point2 cam1_uv3 = cam1.project(landmark3); Point2 cam2_uv3 = cam2.project(landmark3); Point2 cam3_uv3 = cam3.project(landmark3); measurements_cam3 += cam1_uv3, cam2_uv3, cam3_uv3; typedef SmartProjectionFactor SmartFactor; SmartFactor::shared_ptr smartFactor1(new SmartFactor(noiseProjection, K)); smartFactor1->add(cam1_uv1, views[0]); smartFactor1->add(cam2_uv1, views[1]); smartFactor1->add(cam3_uv1, views[2]); SmartFactor::shared_ptr smartFactor2(new SmartFactor(noiseProjection, K)); smartFactor2->add(cam1_uv2, views[0]); smartFactor2->add(cam2_uv2, views[1]); smartFactor2->add(cam3_uv2, views[2]); SmartFactor::shared_ptr smartFactor3(new SmartFactor(noiseProjection, K)); smartFactor3->add(cam1_uv3, views[0]); smartFactor3->add(cam2_uv3, views[1]); smartFactor3->add(cam3_uv3, views[2]); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.push_back(PriorFactor(x1, pose1, noisePrior)); graph.push_back(PriorFactor(x2, pose2, noisePrior)); // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise Values values; values.insert(x1, pose1); values.insert(x2, pose2); // initialize third pose with some noise, we expect it to move back to original pose3 values.insert(x3, pose3*noise_pose); values.at(x3).print("Smart: Pose3 before optimization: "); LevenbergMarquardtParams params; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; Values result; gttic_(SmartProjectionFactor); LevenbergMarquardtOptimizer optimizer(graph, values, params); result = optimizer.optimize(); gttoc_(SmartProjectionFactor); tictoc_finishedIteration_(); // result.print("results of 3 camera, 3 landmark optimization \n"); result.at(x3).print("Smart: Pose3 after optimization: "); EXPECT(assert_equal(pose3,result.at(x3))); tictoc_print_(); } /* ************************************************************************* */ TEST( SmartProjectionFactor, 3poses_projection_factor ){ // cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl; Symbol x1('X', 1); Symbol x2('X', 2); Symbol x3('X', 3); const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); std::vector views; views += x1, x2, x3; Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480)); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); SimpleCamera cam1(pose1, *K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); SimpleCamera cam2(pose2, *K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); SimpleCamera cam3(pose3, *K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); typedef GenericProjectionFactor ProjectionFactor; NonlinearFactorGraph graph; // 1. Project three landmarks into three cameras and triangulate graph.push_back(ProjectionFactor(cam1.project(landmark1), noiseProjection, x1, L(1), K)); graph.push_back(ProjectionFactor(cam2.project(landmark1), noiseProjection, x2, L(1), K)); graph.push_back(ProjectionFactor(cam3.project(landmark1), noiseProjection, x3, L(1), K)); // graph.push_back(ProjectionFactor(cam1.project(landmark2), noiseProjection, x1, L(2), K)); graph.push_back(ProjectionFactor(cam2.project(landmark2), noiseProjection, x2, L(2), K)); graph.push_back(ProjectionFactor(cam3.project(landmark2), noiseProjection, x3, L(2), K)); graph.push_back(ProjectionFactor(cam1.project(landmark3), noiseProjection, x1, L(3), K)); graph.push_back(ProjectionFactor(cam2.project(landmark3), noiseProjection, x2, L(3), K)); graph.push_back(ProjectionFactor(cam3.project(landmark3), noiseProjection, x3, L(3), K)); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); graph.push_back(PriorFactor(x1, pose1, noisePrior)); graph.push_back(PriorFactor(x2, pose2, noisePrior)); Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); Values values; values.insert(x1, pose1); values.insert(x2, pose2); values.insert(x3, pose3* noise_pose); values.insert(L(1), landmark1); values.insert(L(2), landmark2); values.insert(L(3), landmark3); // values.at(x3).print("Pose3 before optimization: "); LevenbergMarquardtParams params; // params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; // params.verbosity = NonlinearOptimizerParams::ERROR; LevenbergMarquardtOptimizer optimizer(graph, values, params); Values result = optimizer.optimize(); // result.at(x3).print("Pose3 after optimization: "); EXPECT(assert_equal(pose3,result.at(x3))); } /* ************************************************************************* */ TEST( SmartProjectionFactor, Hessian ){ cout << " ************************ SmartProjectionFactor: Hessian **********************" << endl; Symbol x1('X', 1); Symbol x2('X', 2); const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); std::vector views; views += x1, x2; Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480)); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); SimpleCamera cam1(pose1, *K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); SimpleCamera cam2(pose2, *K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); // 1. Project three landmarks into three cameras and triangulate Point2 cam1_uv1 = cam1.project(landmark1); Point2 cam2_uv1 = cam2.project(landmark1); vector measurements_cam1; measurements_cam1 += cam1_uv1, cam2_uv1; SmartProjectionFactor smartFactor(measurements_cam1, noiseProjection, views, K); Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); Values values; values.insert(x1, pose1); values.insert(x2, pose2); // values.insert(L(1), landmark1); boost::shared_ptr hessianFactor = smartFactor.linearize(values); hessianFactor->print("Hessian factor \n"); // compute triangulation from linearization point // compute reprojection errors (sum squared) // compare with hessianFactor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance) // check that it is correctly scaled when using noiseProjection = [1/4 0; 0 1/4] } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */