%close all %clc import gtsam.*; %% Read metadata and compute relative sensor pose transforms IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt'); IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2); IMUinBody = Pose3.Expmap([ IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz; IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]); VO_metadata = importdata('KittiRelativePose_metadata.txt'); VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2); VOinBody = Pose3.Expmap([ VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz; VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]); GPS_metadata = importdata('KittiGps_metadata.txt'); GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2); GPSinBody = Pose3.Expmap([ GPS_metadata.BodyPtx; GPS_metadata.BodyPty; GPS_metadata.BodyPtz; GPS_metadata.BodyPrx; GPS_metadata.BodyPry; GPS_metadata.BodyPrz; ]); VOinIMU = IMUinBody.inverse().compose(VOinBody); GPSinIMU = IMUinBody.inverse().compose(GPSinBody); %% Read data and change coordinate frame of GPS and VO measurements to IMU frame IMU_data = importdata('KittiEquivBiasedImu.txt'); IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2); imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false); [IMU_data.acc_omega] = deal(imum{:}); IMU_data = rmfield(IMU_data, { 'accelX' 'accelY' 'accelZ' 'omegaX' 'omegaY' 'omegaZ' }); clear imum VO_data = importdata('KittiRelativePose.txt'); VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2); % Merge relative pose fields and convert to Pose3 logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ]; logposes = num2cell(logposes, 2); relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{1}')}, logposes); % TODO: convert to IMU frame %relposes = arrayfun( [VO_data.RelativePose] = deal(relposes{:}); VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' }); clear logposes relposes GPS_data = importdata('KittiGps.txt'); GPS_data = cell2struct(num2cell(GPS_data.data), GPS_data.colheaders, 2); %% SummaryTemplate = gtsam.ImuFactorPreintegratedMeasurements( ... gtsam.imuBias.ConstantBias([0;0;0], [0;0;0]), ... 1e-3 * eye(3), 1e-3 * eye(3), 1e-3 * eye(3)); %% Set initial conditions for the estimated trajectory disp('TODO: we have GPS so this initialization is not right') currentPoseGlobal = Pose3; % initial pose is the reference frame (navigation frame) currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning bias_acc = [0;0;0]; % we initialize accelerometer biases to zero bias_omega = [0;0;0]; % we initialize gyro biases to zero %% Solver object isamParams = ISAM2Params; isamParams.setRelinearizeSkip(1); isam = gtsam.ISAM2(isamParams); %% create nonlinear factor graph factors = NonlinearFactorGraph; values = Values; %% Create prior on initial pose, velocity, and biases sigma_init_x = 1.0 sigma_init_v = 1.0 sigma_init_b = 1.0 values.insert(symbol('x',0), currentPoseGlobal); values.insert(symbol('v',0), LieVector(currentVelocityGlobal) ); values.insert(symbol('b',0), imuBias.ConstantBias(bias_acc,bias_omega) ); % Prior on initial pose factors.add(PriorFactorPose3(symbol('x',0), ... currentPoseGlobal, noiseModel.Isotropic.Sigma(6, sigma_init_x))); % Prior on initial velocity factors.add(PriorFactorLieVector(symbol('v',0), ... LieVector(currentVelocityGlobal), noiseModel.Isotropic.Sigma(3, sigma_init_v))); % Prior on initial bias factors.add(PriorFactorConstantBias(symbol('b',0), ... imuBias.ConstantBias(bias_acc,bias_omega), noiseModel.Isotropic.Sigma(6, sigma_init_b))); %% Main loop: % (1) we read the measurements % (2) we create the corresponding factors in the graph % (3) we solve the graph to obtain and optimal estimate of robot trajectory i = 2; lastTime = 0; lastIndex = 0; currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate); times = sort([VO_data(:,1); GPS_data(:,1)]); % this are the time-stamps at which we want to initialize a new node in the graph IMU_times = IMU_data(:,1); disp('TODO: still needed to take care of the initial time') for t = times % At each non=IMU measurement we initialize a new node in the graph currentIndex = find( times == t ); currentPoseKey = symbol('x',currentIndex); currentVelKey = symbol('v',currentIndex); currentBiasKey = symbol('b',currentIndex); %% add preintegrated IMU factor between previous state and current state % ======================================================================= IMUbetweenTimesIndices = find( IMU_times>+t_previous & IMU_times<= t); % all imu measurements occurred between t_previous and t % we assume that each row of the IMU.txt file has the following structure: % timestamp delta_t acc_x acc_y acc_z omega_x omega_y omega_z disp('TODO: We want don t want to preintegrate with zero bias, but to use the most recent estimate') currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate); for i=1:length(IMUbetweenTimesIndices) index = IMUbetweenTimesIndices(i); % the row of the IMU_data matrix that we have to integrate deltaT = IMU_data(index,2); accMeas = IMU_data(index,3:5); omegaMeas = IMU_data(index,6:8); % Accumulate preintegrated measurement currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT); end disp('TODO: is the imu noise right?') % Create IMU factor factors.add(ImuFactor( ... previousPoseKey, previousVelKey, ... currentPoseKey, currentVelKey, ... currentBiasKey, currentSummarizedMeasurement, g, cor_v, ... noiseModel.Isotropic.Sigma(9, 1e-6))); % ======================================================================= %% add factor corresponding to GPS measurements (if available at the current time) % ======================================================================= if isempty( find(GPS_data(:,1) == t ) ) == 0 % it is a GPS measurement if length( find(GPS_data(:,1)) ) > 1 error('more GPS measurements at the same time stamp: it should be an error') end index = find(GPS_data(:,1) == t ); % the row of the IMU_data matrix that we have to integrate GPSmeas = GPS_data(index,2:4); noiseModelGPS = ???; % noiseModelGPS.Isotropic.Sigma(6, sigma_init_x)) % add factor disp('TODO: is the GPS noise right?') factors.add(PriorFactor???(currentPoseKey, GPSmeas, noiseModelGPS) ); end % ======================================================================= %% add factor corresponding to VO measurements (if available at the current time) % ======================================================================= if isempty( find(VO_data(:,1) == t ) )== 0 % it is a GPS measurement if length( find(VO_data(:,1)) ) > 1 error('more VO measurements at the same time stamp: it should be an error') end index = find( VO_data(:,1) == t ); % the row of the IMU_data matrix that we have to integrate VOmeas_pos = VO_data(index,2:4)'; VOmeas_ang = VO_data(index,5:7)'; VOpose = Pose3( Rot3(VOmeas_ang) , Point3(VOmeas_pos) ); noiseModelVO = ???; % noiseModelGPS.Isotropic.Sigma(6, sigma_init_x)) % add factor disp('TODO: is the VO noise right?') factors.add(BetweenFactorPose3(lastVOPoseKey, currentPoseKey, VOpose, noiseModelVO)); lastVOPoseKey = currentPoseKey; end % ======================================================================= disp('TODO: add values') % values.insert(, initialPose); % values.insert(symbol('v',lastIndex+1), initialVel); %% Update solver % ======================================================================= isam.update(factors, values); factors = NonlinearFactorGraph; values = Values; isam.calculateEstimate(currentPoseKey); % M = isam.marginalCovariance(key_pose); % ======================================================================= previousPoseKey = currentPoseKey; previousVelKey = currentVelKey; t_previous = t; end disp('TODO: display results') % figure(1) % hold on; % plot(positions(1,:), positions(2,:), '-b'); % plot3DTrajectory(isam.calculateEstimate, 'g-'); % axis equal; % legend('true trajectory', 'traj integrated in body', 'traj integrated in nav')