/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SymbolicSequentialSolver.h * @brief * @author Richard Roberts * @created Oct 21, 2010 */ #pragma once #include #include namespace gtsam { // The base class provides all of the needed functionality typedef GenericSequentialSolver SymbolicSequentialSolver; //class SymbolicSequentialSolver : GenericSequentialSolver { // //protected: // // typedef GenericSequentialSolver Base; // //public: // // SymbolicSequentialSolver(const FactorGraph& factorGraph); // // /** // * Eliminate the factor graph sequentially. Uses a column elimination tree // * to recursively eliminate. // */ // BayesNet::shared_ptr eliminate() const; // // /** // * Compute the marginal Gaussian density over a variable, by integrating out // * all of the other variables. This function returns the result as a factor. // */ // IndexFactor::shared_ptr marginal(Index j) const; // // /** // * Compute the marginal joint over a set of variables, by integrating out // * all of the other variables. This function returns the result as an upper- // * triangular R factor and right-hand-side, i.e. a GaussianBayesNet with // * R*x = d. To get a mean and covariance matrix, use jointStandard(...) // */ // SymbolicFactorGraph::shared_ptr joint(const std::vector& js) const; // //}; }