/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ConcurrentCalibration.cpp * @brief First step towards estimating monocular calibration in concurrent * filter/smoother framework. To start with, just batch LM. * @date June 11, 2014 * @author Chris Beall */ #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam; using symbol_shorthand::K; using symbol_shorthand::L; using symbol_shorthand::X; int main(int argc, char** argv){ Values initial_estimate; NonlinearFactorGraph graph; const auto model = noiseModel::Isotropic::Sigma(2,1); string calibration_loc = findExampleDataFile("VO_calibration00s.txt"); string pose_loc = findExampleDataFile("VO_camera_poses00s.txt"); string factor_loc = findExampleDataFile("VO_stereo_factors00s.txt"); //read camera calibration info from file // focal lengths fx, fy, skew s, principal point u0, v0, baseline b double fx, fy, s, u0, v0, b; ifstream calibration_file(calibration_loc.c_str()); cout << "Reading calibration info" << endl; calibration_file >> fx >> fy >> s >> u0 >> v0 >> b; //create stereo camera calibration object const Cal3_S2 true_K(fx,fy,s,u0,v0); const Cal3_S2 noisy_K(fx*1.2,fy*1.2,s,u0-10,v0+10); initial_estimate.insert(K(0), noisy_K); auto calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 1e-5, 100, 100).finished()); graph.addPrior(K(0), noisy_K, calNoise); ifstream pose_file(pose_loc.c_str()); cout << "Reading camera poses" << endl; int pose_id; MatrixRowMajor m(4,4); //read camera pose parameters and use to make initial estimates of camera poses while (pose_file >> pose_id) { for (int i = 0; i < 16; i++) { pose_file >> m.data()[i]; } initial_estimate.insert(Symbol('x', pose_id), Pose3(m)); } auto poseNoise = noiseModel::Isotropic::Sigma(6, 0.01); graph.addPrior(Symbol('x', pose_id), Pose3(m), poseNoise); // camera and landmark keys size_t x, l; // pixel coordinates uL, uR, v (same for left/right images due to rectification) // landmark coordinates X, Y, Z in camera frame, resulting from triangulation double uL, uR, v, _X, Y, Z; ifstream factor_file(factor_loc.c_str()); cout << "Reading stereo factors" << endl; //read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation while (factor_file >> x >> l >> uL >> uR >> v >> _X >> Y >> Z) { // graph.emplace_shared >(StereoPoint2(uL, uR, v), model, X(x), L(l), K); graph.emplace_shared >(Point2(uL,v), model, X(x), L(l), K(0)); //if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it if (!initial_estimate.exists(L(l))) { Pose3 camPose = initial_estimate.at(X(x)); //transformFrom() transforms the input Point3 from the camera pose space, camPose, to the global space Point3 worldPoint = camPose.transformFrom(Point3(_X, Y, Z)); initial_estimate.insert(L(l), worldPoint); } } Pose3 first_pose = initial_estimate.at(Symbol('x',1)); //constrain the first pose such that it cannot change from its original value during optimization // NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky // QR is much slower than Cholesky, but numerically more stable graph.emplace_shared >(Symbol('x',1),first_pose); cout << "Optimizing" << endl; LevenbergMarquardtParams params; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; //create Levenberg-Marquardt optimizer to optimize the factor graph LevenbergMarquardtOptimizer optimizer(graph, initial_estimate,params); // Values result = optimizer.optimize(); string K_values_file = "K_values.txt"; ofstream stream_K(K_values_file.c_str()); double currentError; stream_K << optimizer.iterations() << " " << optimizer.values().at(K(0)).vector().transpose() << endl; // Iterative loop do { // Do next iteration currentError = optimizer.error(); optimizer.iterate(); stream_K << optimizer.iterations() << " " << optimizer.values().at(K(0)).vector().transpose() << endl; if(params.verbosity >= NonlinearOptimizerParams::ERROR) cout << "newError: " << optimizer.error() << endl; } while(optimizer.iterations() < params.maxIterations && !checkConvergence(params.relativeErrorTol, params.absoluteErrorTol, params.errorTol, currentError, optimizer.error(), params.verbosity)); Values result = optimizer.values(); cout << "Final result sample:" << endl; Values pose_values = utilities::allPose3s(result); pose_values.print("Final camera poses:\n"); result.at(K(0)).print("Final K\n"); noisy_K.print("Initial noisy K\n"); true_K.print("Initial correct K\n"); return 0; }